DOI QR코드

DOI QR Code

Molecular phylogeny of Indonesian Lymantria Tussock Moths (Lepidoptera: Erebidae) based on CO I gene sequences

  • Sutrisno, Hari (Laboratory of Entomology, Division of Zoology, Research Center for Biology, The Indonesian Institute of Sciences)
  • Received : 2013.09.16
  • Accepted : 2014.02.10
  • Published : 2014.02.28

Abstract

Many species of Lymantria are important forestry pests, including L. dispar which is well known distributed from Asia to North America as an invasive species. Like of most other genera of moths, the systematic of this genus is still in dispute, especially on the monophyly and the relationship within this genus due to the fact that genus is very large and varied. This genus was morphologically defined only by a single aphomorphy. To clarify the monophyly of the genus Lymantria, to reveal the phylogenetic relationship among the Indonesian species, and to establish the genetic characters of Indonesian Lymantria, we analyzed 9 species of Indonesian Lymantria involving 33 other species distributed around the world based on nucleotide sequence variation across a 516-bp region in the CO I gene. The results showed that the base composition of this region was a high A+T biased (C: 0.3333). The results also showed that the monophyly of Lymantria was not supported by bootstrap tests at any tree building methods. Indonesian species was distributed into four different groups but the relationship among them was still in dispute. It indicates that relationships among the basal nodes (groups) proposed here were least valid due to the fact that the number of species may not be enough to represent the real number of species in the nature. Moreover CO I gene sequences alone were not able to resolve their relationships at the basal nodes. More investigations were needed by including more species and other genes that the more conserved.

References

  1. Armstrong, K.F. and S.L. Ball. 2005. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society. B: Biological Science 360(1462):1813-1823. https://doi.org/10.1098/rstb.2005.1713
  2. Ball, S.L. and K.F. Armstrong. 2006. DNA barcode for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal Forest Research 36:337-350. https://doi.org/10.1139/x05-276
  3. Cassilde, C., P. Blandin and J.F. Silvain. 2012. Phylogeny of the genus Morpho Fabricius 1807: insights from two mitochondrial genes (Lepidoptera: Nymphalidae). Annales de la Societe entomologique de France (N.S.): International Journal of Entomology 48(1-2):173-188. doi: 10.1080/00379271.2012.10697762. https://doi.org/10.1080/00379271.2012.10697762
  4. Caterino, M.S. and F.A. Sperling. 1999. Phylogeny Papilio based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics Evolution 11(1):122-137. https://doi.org/10.1006/mpev.1998.0549
  5. Collenette, C.L. 1948. The Lymnatriidae of Java. Annal Magazine of Natiural History 12:685-744. http://dx.doi. org/10.1080/00222934808653942. https://doi.org/10.1080/00222934808653942
  6. deWaard, J.R., A. Mitchell, M.A. Keena, D. Gopurenko, L.M. Boykin, K.F. Armstrong, M.G. Pogue, J. Lima, R. Floyd, R.H. Hanner and L.M. Humble. 2010. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) Tussock moths of biosecurity concern (Citations: 1). Journal: PLOS One 5(12):1-10.
  7. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/ TNT. Nucleic Acid Symposium Seri 41:95-98.
  8. Hasegawa, M., H. Kishino and T. Yano. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal Molecular and Evolutionary 22:160-174. https://doi.org/10.1007/BF02101694
  9. Irwin, D.M., T.D. Kocher and A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolutionary 32:128-144. https://doi.org/10.1007/BF02515385
  10. Hebert, P.D., J.R. deWaard and J.F. Landry. 2010. DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6(3):359-362. https://doi.org/10.1098/rsbl.2009.0848
  11. Holloway, J.D. 1999. The moth of Borneo Part 5 Lymantriidae. The Malayan Nature Journal 53:1-188.
  12. Kim, M.I., X. Wan, M.J. Kim, H.C. Jeong, N.H. Ahn, K.B. Kim, Y.S. Han and I. Kim. 2010. Phylogenetic relationships of True butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1${\alpha}$ sequences. Mollecules and Celles 30:409-425. https://doi.org/10.1007/s10059-010-0141-9
  13. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolutionary 16:111-120. https://doi.org/10.1007/BF01731581
  14. Kranthi, S., K.R. Kranthi, A.A. Bharose, S.N. Syed, C.S. Dhawad, R.M. Wadaskar and E.K. Patil. 2006. Cytochrome oxidase I sequence of Helicoverpa (Noctuidae: Lepidoptera) species in India-Its utility as a molecular tool. Indian Journal of Biotechnology 5:195-199.
  15. Matsuki, M., M. Kay, J. Serin, R. Floyd and J.K. Scott. 2001. Potential risk of accidental introduction of Asian Gypsy moth (Lymantria dsipar) to Australia: effect of climatic conditions and suitability of native plants. Agriculture Forest Entomology 3:305-320. https://doi.org/10.1046/j.1461-9555.2001.00119.x
  16. Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, London.
  17. Roe, A.D. and F.A.H. Sperling. 2007. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution 44:325-345. doi: 10.1016/j.ympev.2006.12.005. https://doi.org/10.1016/j.ympev.2006.12.005
  18. Sutrisno, H., N. Azuma and S. Higashi. 2006. Molecular phylogeny of the Indo-Australia Glyphodes and allied genera (Insecta: Lepidoptera: Crambidae) inferred from CO I, CO II and EF-1 alpha genes. Journal of Species Diversity 11:57-69.
  19. Schintlmeister, A. 2004. The taxonomy of the genus Lymantria Hubner [1819] (Lepidoptera: Lymantriidae). Quadrifina 7:1-248.
  20. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, Weighting, and Phylogenetic utility of Mitochondrial Gene Sequences and a Compilation of conserved Polymerase Chain Reaction Primers. Annals Entomological Society 87(6):651-701. https://doi.org/10.1093/aesa/87.6.651
  21. Sutrisno, H., H. Suputa, S. Purnomo, C. Polandono, R. Waluyo, Ubaidillah, Darmawan, Ismail, I. Hidayat and N. Widyastuti. 2013. Notes on some biological aspects of Arctornis riguata Snellen (Lepidoptera: Lymantriidae). HAYATI (Journal of Biosciences) 19(4):47-50.
  22. Sutrisno, H. 2008. Species Status of yelow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae) based on CO I gene sequences. Treubia 36:37-47.
  23. Sutrisno, H. 2011. Molecular Phylogeny of Indonesian Aganaine Moths (Lepidoptera: Noctuidae) based on CO I gene. Treubia 38:71-186.
  24. Sutrisno, H. 2012a. The impact of storage time of museum insect specimen on PCR success: case study on moth collection in Indonesia. HAYATI (Journal of Biosciences) 19(2):99-104. https://doi.org/10.4308/hjb.19.2.99
  25. Sutrisno, H. 2012b. Molecular phyilogeny of Indonesian armyworm Mythimna (Lepidoptera: Noctuidae). HAYATI (Journal of Biosciences) 19(2):60-65. https://doi.org/10.4308/hjb.19.2.60
  26. Swofford, D.L. 2001. PAUP*. Phylogenetic analysis using parsimony (* and Other Methods). Version 4.0b10 for 32-bit Microsoft Windows. Sinauer Associates, Sunderland, Massachusetts.
  27. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony Methods. Molecular Biology and Evolution 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  28. Tsao, W.C. and W.B. Yeh. 2008. DNA-Based Discrimination of Subspecies of Swallowtail Butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological Studies 47(5): 633-643.
  29. van Dorp, K. 2004. Molecular systematics of Lycaena F., 1807 (Lepidoptera: Lycaenidae) - Some preliminary results. Procceding Netherland Entomological society 15:65-70.
  30. van Nieukerken, E.J., C. Doorenweerd, F.R. Stokvis and D.S.J. Groenenberg. 2012. DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-${\alpha}$: two are better than one in recognising cryptic species. Contributions to Zoology 81(1):1-24.
  31. Yamamoto, S. and T. Sota. 2007. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 44:711-723. doi: 10.1016/j.ympev.2006.12.027. https://doi.org/10.1016/j.ympev.2006.12.027
  32. Yang, Z. 2008. Computational Molecular Evolution. Oxford University Press, London.
  33. Zhang, M., T.W. Cao, Y. Zhong, Y.P. Guo and E.B. Ma. 2011. Phylogeny of Limenitidinae Butterflies (Lepidoptera: Nymphalidae) Inferred from Mitochondrial Cytochrome Oxidase I Gene Sequences. Agricultural Sciences in China 10(4):566-575. https://doi.org/10.1016/S1671-2927(11)60038-2

Cited by

  1. Molecular phylogeny of Lymantriinae (Lepidoptera, Noctuoidea, Erebidae) inferred from eight gene regions vol.31, pp.6, 2015, https://doi.org/10.1111/cla.12108
  2. Molecular phylogeny of Indonesian Zeuzera(Lepidoptera:Cossidae) wood borer moths based on CO I gene sequence vol.4, pp.1, 2015, https://doi.org/10.12651/JSR.2015.4.1.049