DOI QR코드

DOI QR Code

Biomechanical evaluation of a bioactive artificial anterior cruciate ligament

  • Guerard, Sandra (Institut de Biomecanique Humaine George Charpak, Arts et Metiers ParisTech) ;
  • Manassero, Mathieu (Ecole Nationale Veterinaire d'Alfort, Service de Chirurgie) ;
  • Viateau, Veronique (Ecole Nationale Veterinaire d'Alfort, Service de Chirurgie) ;
  • Migonney, Veronique (Universite Paris 13, Laboratoire de Biomateriaux et Polymeres de Specialite/CSPBAT, UMR CNRS 7244) ;
  • Skalli, Wafa (Institut de Biomecanique Humaine George Charpak, Arts et Metiers ParisTech) ;
  • Mitton, David (Institut de Biomecanique Humaine George Charpak, Arts et Metiers ParisTech)
  • Received : 2014.03.12
  • Accepted : 2015.01.23
  • Published : 2014.12.25

Abstract

This study aimed to assess the biomechanical performance of a new generation of artificial ligament, which can be considered "bioactive" and "biointegrated," implanted in sheep. Thirty sheep were implanted: 15 sheep received the artificial ligament grafted with a bioactive polymer (grafted) and 15 received the artificial ligament without a bioactive polymer (non-grafted). The animals were sacrificed 3 or 12 months after implantation. The knee kinematics, namely flexion-extension, anterior drawer, and varus-valgus tests, were evaluated using a fully characterized custom-made device. Afterward, the specimens were tested under uniaxial tension until failure. The flexion-extension showed significant differences between (grafted or non-grafted) artificial and native ligaments 3 months after implantation. This difference became non-significant 12 months postoperatively. The anterior tibial drawer was significantly increased 3 months after implantation and remained significantly different only for non-grafted ligament 12 months after implantation. Twelve months after implantation, the differences between grafted and non-grafted ligament biomechanical properties were significant in terms of stiffness. In terms of load to failure, grafted ligaments seem to have had slightly better performance than non-grafted ligaments 12 months postoperatively. Overall these results suggest that grafted artificial ligaments have slightly better biomechanical characteristics than non-grafted artificial ligaments 12 months after implantation in sheep.

Keywords

ACL reconstruction;biomechanics;in vivo integration;in vitro experiments

Acknowledgement

Supported by : Agence Nationale pour la Recherche (ANR)

References

  1. Abramowitch, S., Papageorgiou, C., Withrow, J., Gilbert, T. and Woo, S. (2003), "The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats", J. Orthop. Res., 21(4), 708-715. https://doi.org/10.1016/S0736-0266(02)00265-6
  2. Azmy, C., Guerard, S., Bonnet, X., Gabrielli, F. and Skalli, W. (2010), "EOS(R) orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty", Orthop. Traumatol. Surg. Res., 96(1), 28-36. https://doi.org/10.1016/j.otsr.2009.10.013
  3. Burks, R.T., Crim J., Fink, B.P., Boylan, D.N. and Greis, P.E. (2005), "The effects of semitendinosus and gracilis harvest in anterior cruciate ligament reconstruction", Arthroscopy, 21(10), 1177-1185. https://doi.org/10.1016/j.arthro.2005.07.005
  4. Chaibi, Y., Cresson, T., Aubert, B., Hausselle, J., Neyret, P., Hauger, O., De Guise, J.A. and Skalli, W. (2012), "Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays", Comput. Meth. Biomech. Biomed. Eng., 15(5), 457-466. https://doi.org/10.1080/10255842.2010.540758
  5. Ciobanu, M., Siove, A., Gueguen, V., Gamble, L.J., Castner, D. and Migonney, V. (2006), "Radical graft polymerization of styrene sulfonate on poly(ethylene terephthalate) films for ACL applications: "grafting from" and chemical characterization", Biomacromolecules, 7(3), 755-760. https://doi.org/10.1021/bm050694+
  6. Ferretti, A., Conteduca, F., Labianca, L., Monaco, E. and De Carli, A. (2005), "Evolgate fixation of doubled flexor graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic loading", Am. J. Sports Med., 33(4), 574-582. https://doi.org/10.1177/0363546504269721
  7. Gao, K., Chen, S., Wang, L., Zhang, W., Kang, Y., Dong, Q., Zhou, H. and Li, L. (2010), "Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up", Arthroscopy, 26(4), 515-523. https://doi.org/10.1016/j.arthro.2010.02.001
  8. Hagemeister, N., Duval, N., Yahia, L'H., Krudwig, W., Witzel, U. and De Guise, J-A. (2002), "Comparison of two methods for reconstruction of the posterior cruciate ligament using a computer based method: quantitative evaluation of laxity, three-dimensional kinematics and ligament deformation measurement in cadaver knees", Knee, 9(4), 291-299. https://doi.org/10.1016/S0968-0160(02)00044-3
  9. Hunt, P., Scheffler, S., Unterhauser, F. and Weiler, A. (2005), "A model of soft-tissue graft cruciate ligament reconstruction in sheep", Arch. Orthop. Trauma. Surg., 125(4), 238-248. https://doi.org/10.1007/s00402-004-0643-z
  10. JCGM 101:2008 (2008), "Evaluation of measurement data - Supplement 1 to the "guide to the expression of uncertainty in measurement" - propagation of distributions using a Monte Carlo method", Joint Committee for Guides in Metrology.
  11. Jenny, J-Y., Lefebvre, Y., Vernizeau, M., Lavaste, F. and Skalli, W. (2002), "Validation d'un protocole experimental d'etude optoelectronique de la cinematique active continue de l'articulation du genou in vitro", Rev. Chir. Orthop. Reparatrice Appar. Mot., 88(8), 790-796.
  12. Kleweno, C.P., Jacir, A.M., Gardner, T.R., Ahmad, C.S. and Levine, W.N. (2009), "Biomechanical evaluation of anterior cruciate ligament femoral fixation techniques", Am. J. Sports Med., 37(2), 339-345. https://doi.org/10.1177/0363546508326706
  13. Lavoie, P., Fletcher, J. and Duval, N. (2000), "Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament", Knee, 7(3), 157-163. https://doi.org/10.1016/S0968-0160(00)00039-9
  14. Mascarenhas, R. and MacDonald, P.B. (2008), "Anterior cruciate ligament reconstruction: a look at prosthetics - past, present and possible future", Mc Gill J. Med., 11(1), 29-37.
  15. Milano, G., Mulas, P.D., Sanna-Passino, E., Careddu, G-M., Ziranu, F. and Fabbriciani, C. (2005), "Evaluation of bone plug and soft tissue anterior cruciate ligament graft fixation over time using transverse femoral fixation in a sheep model", Arthroscopy, 21(5), 532-539. https://doi.org/10.1016/j.arthro.2005.02.017
  16. Milano, G., Mulas, P.D., Ziranu, F., Piras, S., Manunta, A. and Fabbriciani, C. (2006), "Comparison between different tibial fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis", Arthroscopy, 22(6), 660-668. https://doi.org/10.1016/j.arthro.2006.04.082
  17. Monaco, E., Labianca, L., Speranza, A., Agro, A.M., Camillieri, G., D'Arrigo, C. and Ferretti, A. (2010), "Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft", J. Orthop. Sci., 15(1), 125-131. https://doi.org/10.1007/s00776-009-1417-9
  18. Nau, T., Lavoie, P. and Duval, N. (2002), "A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament: Two-year follow-up of randomised trial", J. Bone Joint Surg. [Br], 84(3), 356-360. https://doi.org/10.1302/0301-620X.84B3.12400
  19. Pavon-Djavid, G., Gamble, L.J., Ciobanu, M., Gueguen, V., Castner, D. and Migonney, V. (2007), "Bioactive PET fibers and fabrics: grafting, chemical characterization and biological assessment", Biomacromolecules, 8(11), 3317-3325. https://doi.org/10.1021/bm070344i
  20. Scheffler, S.U., Sudkamp, N.P., Gockenjan, A., Hoffmann, R.F. and Weiler, A. (2002), "Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading", Arthroscopy, 18(3), 304-315. https://doi.org/10.1053/jars.2002.30609
  21. Shen, H.C., Chang, J.H., Lee, C.H., Shen, P.H., Yeh, T.T., Wu, C.C. and Kuo, C.L. (2010), "Biomechanical com-parison of cross-pin and endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction- a porcine femur-graft-tibia complex study", J. Surg. Res., 161(2), 282-287. https://doi.org/10.1016/j.jss.2009.01.015
  22. Speirs, A., Simon, D. and Lapner, P. (2010), "Evaluation of a new femoral fixation device in a simulated anterior cruciate ligament reconstruction", Arthroscopy, 26(3), 351-357. https://doi.org/10.1016/j.arthro.2009.08.016
  23. Vaquette, C., Viateau, V., Guerard, S., Anagnostou, F., Manassero, M., Castner, D. and Migonney, V. (2013), "The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration", Biomat., 34(29), 7048-7063. https://doi.org/10.1016/j.biomaterials.2013.05.058
  24. Vayron, R., Barthel, E., Mathieu, V., Soffer, E., Anagnostou, F. and Haiat, G. (2012), "Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant", J. Biomech. Eng., 134(2), 021007. https://doi.org/10.1115/1.4005981
  25. Legnani, C., Ventura, A., Terzaghi, C., Borgo, E. and Albisetti, W. (2010), "Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature", Int. Orthop., 34, 465-471. https://doi.org/10.1007/s00264-010-0963-2
  26. Viateau, V., Zhou, J., Guerard, S., Manassero, M., Thourot, M., Anagnostou, F., Mitton, D., Brulez, B. and Migonney, V. (2011), "LIGART: Synthetic "bioactive" and "biointegrable" ligament allowing a rapid recovery of patients: chemical grafting, in vitro and in vivo biological evaluation, animal experiments, preclinical study", IRBM, 32(2) 118-122. https://doi.org/10.1016/j.irbm.2011.01.007
  27. Viateau, V., Manassero, M., Anagnostou, F., Guérard, S., Mitton, D. and Migonney, V. (2013), "Evaluation of the Ligament Advanced Reinforcement System ($LARS^{TM}$) in a sheep model of anterior cruciate ligament (ACL) replacement. A 3- and 12-month study", Arthroscopy, 29(6), 1079-1088. https://doi.org/10.1016/j.arthro.2013.02.025
  28. Weiler, A., Peine, R., Pashmineh-Azar, A., Abel, C., Sudkamp, N. and Hoffmann, R. (2002), "Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep", Arthroscopy, 18(2), 113-123. https://doi.org/10.1053/jars.2002.30656
  29. WO/2004/067051 (2004), "Biomimetic prosthetic ligament and production method thereof - Ligament prothetique biomimetique et procede d'obtention", European Patent.
  30. Zantop, T., Ferretti, M., Belle, K., Brucker, P., Gilbertson, L. and Fu, F. (2008), "Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament - reconstructed knees intra-articular study in a goat model", Am. J. Sports Med., 36(11), 2158-2166. https://doi.org/10.1177/0363546508320572
  31. Zhou, J., Ciobanu, M., Pavon-Djavid, G., Gueguen, V. and Migonney, V. (2007), "Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis", 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August.

Cited by

  1. A Review on Biomechanical and Treatment Aspects Associated with Anterior Cruciate Ligament vol.38, pp.1, 2017, https://doi.org/10.1016/j.irbm.2016.10.002