Electro-osmotic pump in osteo-articular tissue engineering: A feasibility study

  • Lemonnier, Sarah (Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Universite Paris Est) ;
  • Naili, Salah (Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Universite Paris Est) ;
  • Lemaire, Thibault (Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Universite Paris Est)
  • Received : 2013.02.08
  • Accepted : 2015.03.02
  • Published : 2014.12.25


The in vitro construction of osteo-articular large implants combining biomaterials and cells is of great interest since these tissues have limited regeneration capability. But the development of such organoids is particularly challenging, especially in the later time of the culture, when the extracellular matrix has almost filled the initial porous network. The fluid flow needed to efficiently perfuse the sample can then not be achieved using only the hydraulic driving force. In this paper, we investigate the interest of using an electric field to promote mass transport through the scaffold at the late stage of the culture. Based on the resolution of the electrokinetics equations, this study provides an estimation of the necessary electric driving force to reach a sufficient oxygen perfusion through the sample, thus analyzing the feasibility of this concept. The possible consequences of such electric fields on cellular activities are then discussed.


osteo-articular biomechanics;porous media;mass transport;electro-filtration;tissue engineering;bioreactor


Supported by : French Ministry of Defense


  1. Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M. and Parker, R. (1995), "Electrokinetic remediation: Basics and technology status", J. Hazard Mater., 40(2), 117-137.
  2. Armstrong, P.F., Brighton, C.T. and Star, A.M. (1988), "Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form", J. Orthop. Res., 6(2), 265-271.
  3. Banwart, J.C., Asher, M.A. and Hassanein, R.S. (1995), "Iliac crest bone graft harvest donor site morbidity. A statistical evaluation", Spine, 20(9), 1055-1060.
  4. Buehler, M.J. and Yung, Y.C. (2009), "Deformation and failure of protein materials in physiologically extreme conditions and disease", Natl. Mater., 8(3), 175-188.
  5. Curtze, S., Dembo, M., Miron, M. and Jones, D.B. (2004), "Dynamic changes in traction forces with dc electric field in osteoblast-like cells", J. Cell Sci., 117(13), 2721-2729.
  6. Das, R.H.J., van Osch, G.J.V.M., Kreukniet, M., Oostra, J., Weinans, H. and Jahr, H. (2010), "Effects of individual control of ph and hypoxia in chondrocyte culture", J. Orthop. Res., 28(4), 537-545.
  7. Derjaguin, B.V., Churaev, N. and Muller, V. (1987), Surface Forces, Plenum Press.
  8. Dickson, K., Katzman, S., Delgado, E. and Contreras, D. (1994), "Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results", Clin. Orthop. Relat. Res., 302, 189-193.
  9. Grimshaw, M.J. and Mason, R.M. (2000), "Bovine articular chondrocyte function in vitro depends upon oxygen tension", Osteoarthr. Cartilage, 8(5), 386-392.
  10. Hammerick, K.E., Longaker, M.T. and Prinz, F.B. (2010), "In vitro effects of direct current electric fields on adipose-derived stromal cells", Biochem. Biophys. Res. Comm., 397(1), 12-17.
  11. Harding, I.S., Rashid, N. and Hing, K.A. (2005), "Surface charge and the effect of excess calcium ions on the hydroxyapatite surface", Biomater., 26(34), 6818-6826.
  12. Hartig, M., Joos, U. and Wiesmann, H.P. (2000), "Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro", Euro. Biophys. J., 29(7), 499-506.
  13. Hunter, R.J. (1981), Zeta Potential in Colloid Science: Principles and Applications, Academic Press.
  14. Komarova, S.V., Ataullakhanov, F.I. and Globus, R.K. (2000), "Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts", Am. J. Physiol. Cell-Physiol., 279(4), C1220-C1229.
  15. Le Droumaguet, B., Lacombe, R., Ly, H.B., Guerrouache, M., Carbonnier, B. and Grande, D. (2014), "Engineering functional doubly porous PHEMA-based materials", Polymer., 55(1), 373-379.
  16. Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., Rohan, E. and Sansalone, V. (2011a), "A multiscale theoretical investigation of electric measurements in living bone. Piezo-electricity and electrokinetics", Bul. Math Biol., 73, 2649-2677.
  17. Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S. and Sansalone, V. (2011b), "What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective", J. Mech. Behav. Biomed. Mater., 4(6), 909-920.
  18. Lemaire, T., Kaiser, J., Naili, S. and Sansalone, V. (2010a), "Modelling of the transport in charged porous media including ionic exchanges", Mech. Res. Comm., 37, 495-499.
  19. Lemaire, T., Kaiser, J., Naili, S. and Sansalone, V. (2013), "Textural versus electrostatic exclusionenrichment effects in the effective chemical transport within the cortical bone: A numerical investigation", Int J. Numer. Meth. Biomed. Eng., 29(11), 1223-1242.
  20. Lemaire, T., Lemonnier, S. and Naili, S. (2012), "On the paradoxical determinations of the lacunocanalicular permeability of bone", Biomech. Model Mechanobiol., 11(7), 933-946.
  21. Lemaire, T., Moyne, C. and Stemmelen, D. (2007), "Modelling of electro-osmosis in clayey materials including ph effects", Phys. Chem. Earth., 32(1), 441-452.
  22. Lemaire, T., Naili, S. and Remond, A. (2006), "Multi-scale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone", Biomech. Model. Mechanobiol., 5(1), 39-52.
  23. Lemaire, T., Naili, S. and Remond, A. (2008), "Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement", J. Biomech. Eng., 130(1), 011001.
  24. Lemaire, T., Sansalone, V. and Naili, S. (2010b), "Multiphysical modelling of fluid transport through osteoarticular media", An. Acad. Bras. Cienc., 82(1), 127-144.
  25. Malda, J., Rouwkema, J., Martens, D.E., Le Comte, E.P., Kooy, F.K., Tramper, J., van Blitterswijk, C.A. and Riesle, J. (2004), "Oxygen gradients in tissue engineered pegt/pbt cartilaginous constructs: Measurement and modelling", Biotechnol. Bioeng., 86(1), 9-18.
  26. Mattern, K.J., Nakornchai, C. and Deen, W.M. (2008), "Darcy permeability of agarose-glycosaminoglycan gels analyzed using fiber-mixture and Donnan models", Biophys. J., 95(2), 648-656.
  27. Meng, S., Zhang, Z. and Rouabhia, M. (2011), "Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation", J. Bone Miner. Metab., 29(5), 535-544.
  28. Oddou, C., Lemaire, T., Pierre, J. and David, B. (2011), Hydrodynamics in porous media with applications to tissue engineering, Porous media: applications in biological systems and biotechnology, Ed. K. Vafai, CRC Press.
  29. Phieffer, L.S. and Goulet, J.A. (2006), "Delayed unions of the tibia", J. Bone Joint Surg. Am., 88(1), 206-216.
  30. Porter, R.M., Liu, F., Pilapil, C., Betz, O.B., Vrahas, M.S., Harris, M.B. and Evans, C.H. (2009), "Osteogenic potential of reamer irrigator aspirator (ria) aspirate collected from patients undergoing hip arthroplasty", J. Orthop. Res., 27(1), 42-49.
  31. Protsenko, D., Ho, K. and Wong, B. (2011), "Survival of chondrocytes in rabbit septal cartilage after electromechanical reshaping", Ann. Biomed. Eng., 39(1), 66-74.
  32. Reynaud, B. and Quinn, T.M. (2006), "Anisotropic hydraulic permeability in compressed articular cartilage", J. Biomech., 39(1), 131-137.
  33. Sansalone, V., Kaiser, J., Naili, S. and Lemaire, T. (2013), "Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. A multi-parametric sensitivity analysis", Biomech. Model Mechanobiol., 12(3), 533-553.
  34. Sun, S., Titushkin, I. and Cho, M. (2006), "Regulation of mesenchymal stem cell adhesion and orientation in 3d collagen scaffold by electrical stimulus", Bioelectrochem., 69(2), 133-141.
  35. Utting, J.C., Robins, S.P., Brandao-Burch, A., Orriss, I.R., Behar, J. and Arnett, T.R. (2006), "Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts", Exp. Cell Res., 312(10), 1693-1702.
  36. Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K., Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H. and Kondo, T. (2007), "Electrical stimulation modulates fate determination of differentiating embryonic stem cells", Stem Cell., 25(3), 562-570.
  37. zur Nieden, N.I., Cormier, J.T., Rancourt, D.E. and Kallos, M.S. (2007), "Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors", J. Biotechnol., 129(3), 421-432