DOI QR코드

DOI QR Code

Numerical study of 10-year-old child forearm injury

  • Mao, Haojie (Department of Biomedical Engineering, Wayne State University) ;
  • Cai, Yun (Department of Biomedical Engineering, Wayne State University) ;
  • Yang, King H. (Department of Biomedical Engineering, Wayne State University)
  • Received : 2013.09.05
  • Accepted : 2014.06.23
  • Published : 2014.09.25

Abstract

Forearm fractures in children are very common among all pediatric fractures. However, biomechanical investigations on the pediatric forearm are rather scarce, partially due to the complex anatomy, closely situated, interrelated structures, highly dynamic movement patterns, and lack of appropriate tools. The purpose of this study is to develop a computational tool for child forearm investigation and characterize the mechanical responses of a backward fall using the computational model. A three-dimensional 10-year-old child forearm finite element (FE) model, which includes the ulna, radius, carpal bones, metacarpals, phalanges, cartilages and ligaments, was developed. The high-quality hexahedral FE meshes were created using a multi-block approach to ensure computational accuracy. The material properties of the FE model were obtained by scaling reported adult experimental data. The design of computational experiments was performed to investigate material sensitivity and the effects of relevant parameters in backward fall. Numerical results provided a spectrum of child forearm responses with various effective masses and forearm angles. In addition, a conceptual L-shape wrist guard design was simulated and found to be able to reduce child distal radius fracture.

Keywords

pediatric forearm fractures;finite element model;pediatric biomechanics;parametric study;wrist guard design

Acknowledgement

Supported by : Toyota's Collaborative Safety Research Center (CSRC)

References

  1. Schmitt, K.U., Wider, D., Michel, F.I., Brugger, O., Gerber, H., Denoth, J., (2012), "Characterizing the mechanical parameters of forward and backward falls as experienced in snowboarding", Sports Biomech., 11(1), 57-72. https://doi.org/10.1080/14763141.2011.637127
  2. Takahashi, Y., Kikuchi, Y., Konosu, A., Ishikawa, H., (2000), "Development and validation of the finite element model for the human lower limb of pedestrians", Stapp. Car Crash J., 44, 335-355.
  3. Werner, S.L., Plancher, K.D., (1998), "Biomechanics of wrist injuries in sports", Clin. Sports Med., 17(3), 407-420. https://doi.org/10.1016/S0278-5919(05)70093-4
  4. Schmitt, K.U., Michel, F.I., Staudigl, F., (2011), "Analysing the impact behaviour of recent snowboarding wrist protectors", Proc. Proceedings of the 2011 International IRCOBI Conference on the Biomechanics of Injury, 51-61.
  5. Anderson, D.D., Deshpande, B.R., Daniel, T.E., Baratz, M.E., (2005), "A three-dimensional finite element model of the radiocarpal joint: distal radius fracture step-off and stress transfer", Iowa Orthop. J., 25, 108-117.
  6. Bajuri, M.N., Abdul Kadir, M.R., Murali, M.R., Kamarul, T., (2013), "Biomechanical analysis of the wrist arthroplasty in rheumatoid arthritis: a finite element analysis", Med. Biol. Eng. Comput., 51(1-2), 175-186. https://doi.org/10.1007/s11517-012-0982-9
  7. Beatty, E., Light, T.R., Belsole, R.J., Ogden, J.A., (1990), "Wrist and hand skeletal injuries in children", Hand Clin., 6(4), 723-738.
  8. Carrigan, S.D., Whiteside, R.A., Pichora, D.R., Small, C.F., (2003), "Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture", Ann. Biomed. Eng., 31(6), 718-725. https://doi.org/10.1114/1.1574027
  9. Carson, S., Woolridge, D.P., Colletti, J., Kilgore, K., (2006), "Pediatric upper extremity injuries", Pediatr. Clin. North. Am., 53(1), 41-67, https://doi.org/10.1016/j.pcl.2005.10.003
  10. Chung, K.C., Spilson, S.V., (2001), "The frequency and epidemiology of hand and forearm fractures in the United States", J. Hand Surg. Am., 26(5), 908-915. https://doi.org/10.1053/jhsu.2001.26322
  11. Currey, J.D., Butler, G., (1975), "The mechanical properties of bone tissue in children", J. Bone Joint Surg. Am., 57(6), 810-814. https://doi.org/10.2106/00004623-197557060-00015
  12. de Putter, C.E., van Beeck, E.F., Looman, C.W., Toet, H., Hovius, S.E., Selles, R.W., (2011), "Trends in wrist fractures in children and adolescents, 1997-2009", J. Hand Surg. Am., 36(11), 1810-1815. https://doi.org/10.1016/j.jhsa.2011.08.006
  13. Gislason, M.K., Stansfield, B., Nash, D.H., (2010), "Finite element model creation and stability considerations of complex biological articulation: The human wrist joint", Med. Eng. Phys., 32(5), 523-531. https://doi.org/10.1016/j.medengphy.2010.02.015
  14. Godderidge, C., (1995), "Pediatric Imaging", Saunders, Philadelphia, USA.
  15. Greenwald, R.M., Janes, P.C., Swanson, S.C., McDonald, T.R., (1998), "Dynamic impact response of human cadaveric forearms using a wrist brace", Am. J. Sports Med., 26(6), 825-830. https://doi.org/10.1177/03635465980260061501
  16. Guo, X., Fan, Y., Li, Z.M., (2009), "Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study", Med. Eng. Phys., 31(2), 188-194. https://doi.org/10.1016/j.medengphy.2008.08.001
  17. Irwin, A., Mertz, H., (1997), Biomechanical basis for the CRABI and hybrid III child dummies. SAE Technical Paper 973317, doi:10.4271/973317. https://doi.org/10.4271/973317
  18. Ivarsson, J., Okamoto, M., Takahashi, Y., (2013), Experimental Injury Biomechanics of the Pediatric Extremities and Pelvis. Springer, New York, USA.
  19. Javanmardian, A., HaghPanahi, M., (2010), "Three dimensional finite element analysis of the human wrist joint without ligaments under compressive loads", 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore IFMBE Proceedings 31, 628-631.
  20. Jiang, B., Cao, L., Mao, H., Wagner, C., Marek, S., Yang, K.H., (2014), "Development of a 10-year-old paediatric thorax finite element model validated against cardiopulmonary resuscitation data", Comput. Methods Biomech. Biomed. Engin., 17(11), 1185-1197. https://doi.org/10.1080/10255842.2012.739164
  21. Koo, M.W., Yang, K.H., Begeman, P., Hammami, M., Koo, W.W., (2001), "Prediction of bone strength in growing animals using noninvasive bone mass measurements", Calcif. Tissue Int., 68(4), 230-234. https://doi.org/10.1007/s002230010006
  22. Lewis, L.M., West, O.C., Standeven, J., Jarvis, H.E., (1997). "Do wrist guards protect against fractures?", Ann. Emerg. Med., 29(6), 766-769. https://doi.org/10.1016/S0196-0644(97)70198-7
  23. Lindahl, O., Lindgren, A.G., (1967), "Cortical bone in man. II. Variation in tensile strength with age and sex", Acta Orthop. Scand., 38(2), 141-147. https://doi.org/10.3109/17453676708989628
  24. Machold, W., Kwasny, O., Eisenhardt, P., Kolonja, A., Bauer, E., Lehr, S., Mayr, W., Fuchs, M., (2002), "Reduction of severe wrist injuries in snowboarding by an optimized wrist protection device: a prospective randomized trial", J. Trauma, 52(3), 517-520. https://doi.org/10.1097/00005373-200203000-00016
  25. Mao, H., Jin, X., Zhang, L., Yang, K.H., Igarashi, T., Noble-Haeusslein, L.J., King, A.I., (2010a), "Finite element analysis of controlled cortical impact-induced cell loss", J. Neurotrauma, 27(5), 877-888. https://doi.org/10.1089/neu.2008.0616
  26. Mao, H., Yang, K.H., King, A.I., Yang, K., (2010b), "Computational neurotrauma-design, simulation, and analysis of controlled cortical impact model", Biomech. Model Mechanobiol., 9(6), 763-772. https://doi.org/10.1007/s10237-010-0212-z
  27. Mao, H., Holcombe, S., Shen, M., Jin, X., Wagner, C.D., Wang, S.C., Yang, K.H., and King, A.I., (2014), "Development of a 10-year-old full body geometric dataset for computational modeling", Ann. Biomed. Eng., 42(10), 2143-2145. https://doi.org/10.1007/s10439-014-1078-5
  28. Mertz, H.J., Jarrett, K., Moss, S., Salloum, M., Zhao, Y., (2001), "The Hybrid III 10-Year-Old Dummy", Stapp. Car Crash J., 45, 319-328.
  29. Miyake, T., Hashizume, H., Inoue, H., Shi, Q., Nagayama, N., (1994), "Malunited Colles' fracture. analysis of stress distribution", J. Hand Surg. Br., 19(6), 737-742. https://doi.org/10.1016/0266-7681(94)90248-8
  30. Parmelee-Peters, K., Eathorne, S.W., (2005), "The wrist: common injuries and management", Prim. Care, 32(1), 35-70. https://doi.org/10.1016/j.pop.2004.11.015