Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G. (Department of Animal Life System, Kangwon National University) ;
  • Cho, W.S. (Department of Animal Life System, Kangwon National University) ;
  • Lee, J.E. (Department of Animal Life System, Kangwon National University) ;
  • Park, K.H. (Department of Animal Life System, Kangwon National University) ;
  • Ra, C.S. (Department of Animal Life System, Kangwon National University)
  • Received : 2013.07.02
  • Accepted : 2013.08.24
  • Published : 2014.03.01


Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.


  1. Amon, B., T. Amon, J. Boxberger, and C. Alt. 2001. Emissions of $NH_3$, $N_2O$ and $CH_4$ from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading). Nutr. Cycl. Agroecosys. 60:103-113.
  2. Chadwick, D. R., B. F. Pain, and S. K. E. Brookman. 2000. Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual. 29:277-287.
  3. Beck-Frii, B., M. Pell, U. Sonesson, H. Jonsson, and H. Kirchmann. 2000. Formation and emission of $N_2O$ and $CH_4$ from compost heaps of organic household waste. Environ. Monit. Assess. 62:317-331.
  4. Blanes-Vidal, V., M. N. Hansen, S. Pedersen, and H. B. Rom. 2008. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effect of rooting material, animal activity and ventilation flow. Agric. Ecosys. Environ. 124:237-244.
  5. Brown, H. A., C. Wagner-Riddle, and G. W. Thurtell. 2002. Nitrous oxide flux from a solid manure pile measured using a micrometerorological mass balance method. Nutr. Cycl. Agroecosys. 62:53-60.
  6. Cho, C-S., J-H. Sa, K-K. Lim, T-M. Youk, S-J. Kim, and E-C. Jeon. 2012. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant. Sci. World J Article ID 989249. 9 p.
  7. EPA. 1998. Field Evaluation of EPA Method 0040 (Volatiles using bags). EPA/600/SR-98/030. p. 2.
  8. EPA. 1981. Anaerobic Fermentation of Beef Cattle Manure. p. 1108.
  9. FAO. 2003. World Agriculture: towards 2015/2030. An FAO perspective. Food and Agriculture Organization, Rome, p. 97.
  10. Granli, T. and O. C. Bockman. 1994. Nitrous oxide from agriculture. Norw. J. Agric. Sci. Suppl. 12:1-127.
  11. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller). Cambridge, UK, Cambridge University Press.
  12. Garg, A., S. Bhattacharya, P. R. Shukla, and V. R. Dadhwal. 2001. Regional and sectoral assessment of greenhouse gas emissions in India. Atmos. Environ. 35:2679-2695.
  13. Gonzalez-Avalos, E. and L. G. Ruiz-Suarez. 2001. Methane emission factor from cattle manure in Mexico. Bioresour. Technol. 80:63-71.
  14. Gupta, P. K., A. K. Jha, S. Koul, P. Sharma, V. Pradhan, V. Gupta, C. Sharma, and N. Singh. 2007. Methane and nitrous oxide emission from bovine manure management practices in India. Environ. Pollut. 146:219-224.
  15. IPCC. 1996. Climate change 1995. In: The Science of Climate Change (Ed. J. T. Houghton et al.). Cambridge University Press, UK.
  16. IPCC. 2006. Emission from livestock and manure management. In: Guidelines for National Greenhouse Gas Inventories, Prepared by National Greenhouse Gas Inventories Programme (Ed. S. Eggleston et al.). IGES, Japan.
  17. Kirchmann, H. and A. Lundvall. 1993. Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biol. Fertil. Soils. 15:161-164.
  18. Kumar, S., S. S. Dagar, S. K. Sirohi, R. C. Upadhyay, and A. K. Puniya. 2013. Microbial profiles, methanogenesis and digestibility in vitro based on varying concentrations of roughage. Ann. Microbiol. 63:541-545.
  19. Kulling, D. R., H. Menzi, F. Sutter, P. Lischer, and M. Kreuzer. 2003. Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived grass and hay- based rations. Nutr. Cycl. Agroecosys. 65:13-22.
  20. Kumar, S., A. K. Puniya, M. Puniya, S. S. Dagar, S. K. Sirohi, K. Singh, and G. W. Griffith. 2009. Factors affecting rumen methanogens and methane mitigation strategies. World J. Microbiol. Biotechnol. 25:1557-1566.
  21. Kumar, S., P. K. Choudhury, M. D. Carrod, G. W. Griffith, S. S. Dagar, M. Puniya, S. Calabro, S. R. Ravella, T. Dhewa, R. C. Upadhyay, S. K. Sirohi, S. S. Kundu, M. Wanapat, and A. K. Puniya. 2014. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 98:31-44.
  22. Loyon, L., F. Guiziou, and P. Saint Cast. 2008. Impact of manure management of different livestock on gaseous emissions: laboratory study. Aust. J. Exp. Agric. 48:128-131.
  23. Lu, R. D., Y. E. Li, F. Shi, and Y. F. Wan. 2008. Effect of compost on the greenhouse gases emission from dairy manure. J. Agro-Environ. Sci. 27:1235-1241.
  24. Moss, A. R., J. P. Jouany, and J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49:231-253.
  25. Menzi, H., B. Pain, and K. Smith. 1998. Solid Manure in Europe. Results of a survey by the working group on solid manure of RAMIRAN. In: Proceedings of the 8th International Conference on Management Strategies for Organic Waste Use in Agriculture, Rennes, France.
  26. Petersen, S. O., A. M. Lind, and S. G. Sommer. 1998. Nitrogen and organic matter losses during storage of cattle and pig manure. J. Agric. Sci. 130:69-79.
  27. Nouchi, I., S. Mariko, and K. Aoki. 1990. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol. 94:59-66.
  28. Park, K. H., G. T. Andrew, M. Michele, C. Karen, and W. Claudia. 2006. Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmos. Environ. 40:618-627.
  29. Paul, J. W. and E. G. Beauchamp. 1989. Effect of carbon constituents in manure on denitrification in soil. Can. J. Soil Sci. 69:49-61.
  30. Robinson, J. A., W. J., Smolemski, M. L. Ogilvie, and J. P. Peters. 1989. In vitro total gas, $CH_4$, $H_2$, volatile fatty acids and lactate kinetics studies on luminal contents from small intestine, cecum and colon of pig. Appl. Environ. Microbiol. 55:2460-2467.
  31. Safley Jr., L.M., M. E. Casada, J. W. Woodbury, and K. F. Roos. 1992. Global methane emission from livestock and poultry manure. USEPA Report 400/1-91/048. USEPA, Washington, DC
  32. Smith, K. A., A. J. Brewer, J. Crabb, and A. Dauven. 2001. A survey of the production and use of animal manure in England and Wales. III. Cattle manure. Soil Use Manage. 17:77-87.
  33. Sorai, M., N. Yoshida, and M. Ishikawa. 2007. Biogeochemical simulation of nitrous oxide cycle based on the major nitrogen processes. J. Geophys. Res. 112:G1. 2005JG000109.
  34. SPSS, Inc. 1996. Systat version 6.0.1.
  35. Velthof, G. L., P. J. Kuikman, and O. Oenema. 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37:221-230.
  36. Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan. 2006. Livestock's Long Shadow: Environmental Issues and Options. Food and Agricultural Organization, UN, Rome.
  37. Steven, C. E. and I. D. Hume. 1995. Comparative Physiology of the Vertebrate Digestive System. Cambridge University Press, Cambridge.
  38. Sukahara, T. and K. Ushida. 2000. Effects of animal and plant protein on cecal fermentation in guinea pigs (Cavia porclellus), rats (Rattus norvegicus) and chicks (Gallus gallus domesticus). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 127:139-146.
  39. Wang, J., C. Duan, Y. Ji, and Y. Sun. 2010. Methane emissions during storage of different treatments from cattle manure in Tianjin. J. Environ. Sci. 22:1564-1569.
  40. Wang, S-H. and D-J. Huang. 2005. Assessemnt of greenhouse gas emissions from poultry enteric fermentation. Asian-Aust. J. Anim. Sci. 18:873-878.
  41. Yamaji, K., T. Ohara, and H. Akimoto. 2003. A country specific high resolution emission inventory for methane from livestock in Asia in 2000. Atmos. Environ. 37:4393-4406.
  42. Yamulki, S. 2006. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agric. Ecosys. Environ. 112:140-145.
  43. Yamulki, S., S. C. Jarvis, and P. Owen. 1999. Methane emission and uptake from soils as influenced by excreta deposition from grazing animals. J. Environ. Qual. 28:676-682.
  44. You, Y. B., H. M. Dong, Z. P. Zhu, X. P. Tao, and Y. X. Chen. 2008. Experiments on influencing factors of methane emissions from beef cattle manure stack. Trans. CSAE 24:168-172.

Cited by

  1. Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014) vol.29, pp.12, 2015,