DOI QR코드

DOI QR Code

Piglets' Surface Temperature Change at Different Weights at Birth

  • Caldara, Fabiana Ribeiro (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • dos Santos, Luan Sousa (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • Machado, Sivanilza Teixeira (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • Moi, Marta (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • de Alencar Naas, Irenilza (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • Foppa, Luciana (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • Garcia, Rodrigo Garofallo (Federal University of Grande Dourados, College of Agrarian Sciences) ;
  • de Kassia Silva dos Santos, Rita (Federal University of Grande Dourados, College of Agrarian Sciences)
  • Received : 2013.08.15
  • Accepted : 2013.10.07
  • Published : 2014.03.01

Abstract

The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

Keywords

Infrared Thermography;Piglet Weight;Thermal Comfort

References

  1. Brown-Brandl, T. M., R. A. Eigengerg, J. A. Nienaber, and S. D. Kachman. 2001. Thermoregulatory profile of a newer genetic line of pigs. Livest. Prod. Sci. 71:253-260. https://doi.org/10.1016/S0301-6226(01)00184-1
  2. Antunes, R. C. 2007. Planejando a reposicao de reprodutores (macho e femea) e impacto sobre a eficiencia reprodutiva da granja. Rev. Bras. Reprod. Anim. 31:41-46.
  3. Baxter, E. M., S. Jarvis, R. B. D'Eath, D. W. Ross, S. K. Robson, M. Farish, I. M. Nevison, A. B. Lawrence, and S. A. Edwards. 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69:773-783. https://doi.org/10.1016/j.theriogenology.2007.12.007
  4. Damgaard, L. H., L. Rydhmer, P. Lovendahl, and K. Grandinson. 2003. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci. 81:604-610.
  5. Ferreira, R. A., J. Chiquieri, P. P. Mendonca, T. V. Melo, M. D. Cordeiro, and R. T. R. N. Soares. 2007. Comportamento e parametros fisiologicos de leitoes nas primeiras 24 horas de vida. Cienc. Agrotec. 31:1845-1849. https://doi.org/10.1590/S1413-70542007000600036
  6. Gondret, F., L. Lefaucheur, I. Louveau, B. Lebret, X. Pichodo, and Y. Le Cozler. 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livest. Prod. Sci 93:137-146. https://doi.org/10.1016/j.livprodsci.2004.09.009
  7. Herpin, P. and J. Le Dividich. 1995. Thermoregulation and the environment. In: The Neonatal Pig (Ed. M. Varley). Development and Survival. CAB International, Wallingford, pp. 57-98.
  8. Lay Junior D. C., R. L. Matteri, J. A. Carroll, T. J. Fangman, and T. J. Safranski. 2002. Preweaning survival in swine. J. Anim. Sci. 80:E74-E86.
  9. Herpin, P., M. Damon, and J. Le Dividich. 2002. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78:25-45. https://doi.org/10.1016/S0301-6226(02)00183-5
  10. Herpin, P., A. Vincent, and M. Damon. 2004. Effect of breed and body weight on thermoregulatory abilities of European (Pietrain${\times}$(Landrace${\times}$Large White)) and Chinese (Meishan) piglets at birth. Livest. Prod. Sci. 88:17-26. https://doi.org/10.1016/j.livprodsci.2003.11.006
  11. Jensen, T., L. J. Pedersen, and E. Jorgensen. 2011. Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci. 89:2073-2085. https://doi.org/10.2527/jas.2010-3022
  12. Lima, A. L., R. F. M. Oliveira, J. L. Donzele, H. C. Fernandes, P. H. R. F. Campos, and M. V. L. Antunes. 2011. Resfriamento do piso da maternidade para porcas em lactacao no verao. Rev. Bras. Zootec. 40:804-811. https://doi.org/10.1590/S1516-35982011000400014
  13. Lossec, G., P. Herpin, and J. Le Dividich. 1998. Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. Exp. Physiol. 83:667-678. https://doi.org/10.1113/expphysiol.1998.sp004148
  14. Malmkvist, J., L. J. Pedersen, B. M. Damgaard, K. Thodberg, E. Jorgensen, and R. Labouriau. 2006. Does floor heating around parturition affect the vitality of piglets born to loose housed sows? Appl. Anim. Behav. Sci. 99:88-105. https://doi.org/10.1016/j.applanim.2005.10.007
  15. Manno, M. C., R. F. M Oliveira, J. L. Donzele, A. S. Ferreira, W. P. Oliveira, K. R. S. Lima, and R. G. M. Vaz. 2005. Efeito da temperatura ambiente sobre o desempenho de suinos dos 15 aos 30 kg. R. Bras. Zootec. 34:1963-1970. https://doi.org/10.1590/S1516-35982005000600021
  16. Orozco-Gregorio, H., D. Mota-Rojas, M. Alonso-Spilsbury, M. Gonzalez-Lozano, M. Trujillo-Ortega, S. A. Olmos-Hernandez, P. Sanchez-Aparicio, R. Ramarez-Necoechea, R. Hernandez-Gonzalez, R. Uribe-Escamilla, and D.Villanueva-Garcia. 2007. Importance of blood gas measurements in perinatal asphyxia and alternatives to restore the acid base balance status to improve the newborn performance. Am. J. Biochem. Biotechnol. 3:131-140. https://doi.org/10.3844/ajbbsp.2007.131.140
  17. Mendonca, A. B. 2010. Conforto termico em suinos visando melhoria na producao e qualidade do produto final. Postgraduate Monography, Universidade Castelo Branco, Campinas, SP, Brazil.
  18. Merks, J., D. Ducro-Steverink, and H. Feitsma 2000. Management and genetic factors affecting fertility in sows. Reprod. Domest. Anim. 35:261-266. https://doi.org/10.1046/j.1439-0531.2000.00269.x
  19. Mount, L. E. 1959. The metabolic rate of the new-born pig in relation to environmental temperature and to age. J. Physiol. 147:333-345. https://doi.org/10.1113/jphysiol.1959.sp006247
  20. Pandorfi, H., I. J. O. Silva, D. J. Moura, and K. B. Sevegnani. 2005. Microclima de abrigos escamoteadores para leitoes submetidos a diferentes sistemas de aquecimento no periodo de inverno. Rev. Bras. Eng. Agric. Amb. 9:99-106. https://doi.org/10.1590/S1415-43662005000100015
  21. Panzardi, A., T. Bierhals, A. P. G. Mellagi, M. L. Bernardi, F. P. Bortolozzo, and I. Wentz. 2009. Survival of piglets according to physiological parameters at birth. In: Proceedings of the 8th International Conference on Pig Reproduction (Banff, Canada). (in press).
  22. Panzardi, A., M. L. Bernardi, A. P. Mellagi, T. Bierhals, F. P. Bortolozzo, and I. Wentz. 2013 Newborn piglet traits associated with survival and growth performance until weaning. Prev. Vet. Med. 110:206-213. https://doi.org/10.1016/j.prevetmed.2012.11.016
  23. Pastorelli, G. M., M. Neil, and I. Wigren. 2009. Body composition and muscle glycogen contents of piglets of sows fed diets differing in fatty acids profile and contents. Livest. Sci. 123:329-334. https://doi.org/10.1016/j.livsci.2008.11.023
  24. Sorensen, D., A. Vernersen, and S. Andersen. 2000. Bayesian analysis of response to selection: A case study using litter size in Danish Yorkshire pigs. Genetics 156:283-295.
  25. Quesnel, H., C. Farmer, and N. Devillers. 2012. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 146:105-114. https://doi.org/10.1016/j.livsci.2012.03.010
  26. Quiniou, N., J. Dagorn, and D. Gaudre D. 2002. Variation of piglet's birth weight and consequences on subsequent performance. Livest. Prod. Sci. 78:63-70. https://doi.org/10.1016/S0301-6226(02)00181-1
  27. SAS Institute Inc. 2001. SAS/STAT user's guide: Version 6. 6th ed. SAS Institute Inc., Cary, North Carolina.
  28. Souza, P. 2007. O frio e sua influencia no comportamento do suino. Porkworld. Access: http://editora-animalworld.com.br/ porkworld/artigos/post/o-frio-e-suainfluencia-no-comportamento-do-suino_10086.
  29. Tuchscherer, M., B. Puppe, A. Tuchscherer, and U. Tiemann. 2000. Earley identification of neonates at risktraits of newborn piglets with respect to survival. Theriogenology 54:371-388. https://doi.org/10.1016/S0093-691X(00)00355-1
  30. Van Rens, B. T. T. M., G. De Koning, R. Bergsma, and Van Der Lende T. 2005. Preweaning piglet mortality in relation to placental efficiency. J. Anim. Sci. 83:144-151.
  31. Yan, P. S. and S. Yamamoto. 2000. Relationship between thermoregulatory responses and heat loss in piglets. J. Anim. Sci. 71:505-509.

Cited by

  1. SOWS AND PIGLETS THERMAL COMFORT: A COMPARATIVE STUDY OF THE TILES USED IN THE FARROWING HOUSING vol.36, pp.6, 2016, https://doi.org/10.1590/1809-4430-eng.agric.v36n6p996-1004/2016
  2. Infrared Thermal Image for Assessing Animal Health and Welfare vol.2, pp.3, 2014, https://doi.org/10.14269/2318-1265/jabb.v2n3p66-72