DOI QR코드

DOI QR Code

Association between Motilin Receptor Gene Haplotypes and Growth Traits in Japanese Hinai-dori Crossbred Chickens

  • Takahashi, Hideaki (National Institute of Livestock and Grassland Science) ;
  • Rikimaru, Kazuhiro (Akita Prefectural Livestock Experiment Station) ;
  • Komatsu, Megumi (Akita Prefectural Livestock Experiment Station) ;
  • Uemoto, Yoshinobu (National Livestock Breeding Center) ;
  • Suzuki, Keiichi (Graduate School of Agricultural Science, Tohoku University)
  • Received : 2013.08.13
  • Accepted : 2013.10.10
  • Published : 2014.03.01

Abstract

We previously identified quantitative trait loci (QTL) for body weight and average daily gain in a common region between ADL0198 (chr 1: 171.7 Mb) and ABR0287 (chr 1: 173.4 Mb) on chicken chromosome 1 in an $F_2$ resource population produced by crossing low- and high-growth lines of the Hinai-dori breed. Motilin receptor (MLNR) is a candidate gene affecting growth traits in the region. In this study, we genotyped polymorphisms of the MLNR gene and investigated its association with growth traits in a Hinai-dori $F_2$ intercross population. All the exons of the MLNR gene in the parental population were subjected to PCR amplification, nucleotide sequenced and haplotypes identified. To distinguish resultant diplotype individuals in the $F_2$ population, a mismatch amplification mutation assay was performed. Three haplotypes (Haplotypes 1-3) were accordingly identified. Six genotypes produced by the combination of three haplotypes (Haplotype 1, 2, and 3) were examined in order to identify associations between MLNR haplotypes and growth traits. The data showed that Haplotype 1 was superior to Haplotype 2 and 3 in body weight at 10 and 14 weeks of age, average daily gain between 4 and 10 weeks, 10 and 14 weeks, and 0 and 14 weeks of age in female in $F_2$ females. It was concluded that MLNR is a useful marker of growth traits and could be used to develop strategies for improving growth traits in the Hinai-dori breed.

Keywords

Chicken;Hinai-dori;Growth;Marker Gene;Motilin Receptor

References

  1. Abasht, B., J. C. M. Dekkers, and S. J. Lamont. 2006. Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096. https://doi.org/10.1093/ps/85.12.2079
  2. Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2:130-138. https://doi.org/10.1038/35052563
  3. Banfield, D. K., R. T. A. MacGillivray, J. C. Brown, and C. H. S. McIntosh. 1992. The isolation and characterization of rabbit motilin precursor cDNA. Biochim. Biophys. Acta. 1131:341-344. https://doi.org/10.1016/0167-4781(92)90038-2
  4. Bond, C. T., G. Nilaver, B. Godfrey, E. A. Zimmerman, and J. P. Adelman. 1988. Characterization of complementary deoxyribonucleic acid for precursor of porcine motilin. Mol. Endocrinol. 2:175-180. https://doi.org/10.1210/mend-2-2-175
  5. Brown, J. C., V. Mutt, and J. R. Dryburgh. 1971. The further purification of motilin, a gastric motor activity stimulating polypeptide from the mucosa of the small intestine of hogs. Can. J. Physiol. Pharmacol. 49:399-405. https://doi.org/10.1139/y71-047
  6. Cao, Z. P., S. Z. Wang, Q. G. Wang, Y. X. Wang, and H. Li. 2007. Association of spot14$\alpha$ gene polymorphisms with body weight in the chicken. Poult. Sci. 86:1873-1880. https://doi.org/10.1093/ps/86.9.1873
  7. Cha, R. S., H. Zarbl, P. Keohavong, and W. G. Thilly. 1992. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl. 2:14-20. https://doi.org/10.1101/gr.2.1.14
  8. Dass, N. B., J. Hill, A. Muir, T. Testa, A. Wise, and G. J. Sanger. 2003. The rabbit motilin receptor: molecular characterization and pharmacology. Br. J. Pharmacol. 140:948-954. https://doi.org/10.1038/sj.bjp.0705505
  9. DeClercq, P., I. Depoortere, M. Macielag, A. Vandermeers, M-C. Vandermeers-Piret, and T. L. Peeters. 1996. Isolation, sequence, and bioactivity of chicken motilin. Peptides 17:203-208. https://doi.org/10.1016/0196-9781(95)02120-5
  10. Deniaud, E., J. Baguet, R. Chalard, B. Blanquier, L. Brinza, J. Meunier, M. C. Michallet, A. Laugraud, C. Ah-Soon, A. Wierinckx, M. Castellazzi, J. Lachuer, C. Gautier, J. Marvel, and Y. Leverrier. 2009. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS ONE 4:e7035. https://doi.org/10.1371/journal.pone.0007035
  11. Ensembl Genome Browser. 2004. European Bioinformatics Institute, UK. http://ensembl.genomics.org.cn/ Accessed June 2013.
  12. Fang, M., Q. Nie, C. Luo, D. Zhang, and X. Zhang. 2010. Associations of GHSR gene polymorphisms with chicken growth and carcass traits. Mol. Biol. Rep. 37:423-428. https://doi.org/10.1007/s11033-009-9556-9
  13. Feighner, S. D., C. P. Tan, K. K. McKee, O. C. Palyha, D. L. Hreniuk, S. S. Pong, C. P. Austin, D. Figueroa, D. MacNeil, M. A. Cascieri, R. Nargund, R. Bakshi, M. Abramovitz, R. Stocco, S. Kargman, G. O'Neill, L. H. Van Der Ploeg, J. Evans, A. A. Patchett, R. G. Smith, and A. D. Howard. 1999. Receptor for motilin identified in the human gastrointestinal system. Science 284:2184-2188. https://doi.org/10.1126/science.284.5423.2184
  14. Garthwaite, T. L. 1985. Peripheral motilin administration stimulates feeding in fasted rats. Peptides 6:41-44.
  15. Han, R. L., Z. J. Lia, M. J. Lia, J. Q. Lib, X. Y. Lana, G. R. Sunb, X. T. Kangb, and H. Chena. 2011. Novel 9-bp indel in visfatin gene and its associations with chicken growth. Br. Poult. Sci. 52:52-57. https://doi.org/10.1080/00071668.2010.537310
  16. He, J., D. M. Irwin, R. Chen, and Y. P. Zhang. 2010. Stepwise loss of motilin and its specific receptor genes in rodents. J. Mol. Endocrinol. 44:37-44. https://doi.org/10.1677/JME-09-0095
  17. Howard, A. D., R. Wang, S. S. Pong, T. N. Mellin, A. Strack, X. M. Guan, Z. Zeng, D. L. Williams Jr., S. D. Feighner, C. N. Nunes, B. Murphy, J. N. Stair, H. Yu, Q. Jiang, M. K. Clements, C. P. Tan, K. K. McKee, D. L. Hreniuk, T. P. McDonald, K. R. Lynch, J. F. Evans, C. P. Austin, C. T. Caskey, L. H. Van der Ploeg, and Q. Liu. 2000. Identification of receptors for neuromedin U and its role in feeding. Nature 406:70-74. https://doi.org/10.1038/35017610
  18. Hu, Z. L., E. R. Fritz, and J. M. Reecy. 2007. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucl. Acids Res. 35:604-609. https://doi.org/10.1093/nar/gkl946
  19. In, K. H., K. Asano, D. Beier, J. Grobholz, P. W. Finn, E. K. Silverman, E. S. Silverman, T. Collins, A. R. Fischer, T. P. Keith, K. Serino, S. W. Kim, G. T. De Sanctis, C. Yandava, A. Pillari, P. Rubin, J. Kemp, E. Israel, W. Busse, D. Ledford, J. J. Murray, A. Segal, D. Tinkleman, and J. M. Drazen. 1997. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J. Clin. Invest. 99:1130-1137. https://doi.org/10.1172/JCI119241
  20. Kitazawa, T., H. Kaiya, and T. Taneike. 2007. Contractile effects of ghrelin-related peptides on the chicken gastrointestinal tract in vitro. Peptides 28:617-624. https://doi.org/10.1016/j.peptides.2006.10.012
  21. Kitazawa, T., T. Taneike, and A. Ohga. 1997. Functional characterization of neural and smooth muscle motilin receptors in the chicken proventriculus and ileum. Regul. Pept. 71:87-95. https://doi.org/10.1016/S0167-0115(97)01024-0
  22. Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656-660. https://doi.org/10.1038/45230
  23. Lei, M., X. Peng, M. Zhou, C. Luo, Q. Nie, and X. Zhang. 2008. Polymorphisms of the IGF1R gene and their genetic effects on chicken early growth and carcass traits. BMC Genet. 9:70.
  24. Lei, M. M., Q. H. Nie, X. Peng, D. X. Zhang, and X. Q. Zhang. 2005. Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poult. Sci. 84:1191-1198. https://doi.org/10.1093/ps/84.8.1191
  25. Leng, L., S. Wang, Z. Li, Q. Wang, and H. Li. 2009. A polymorphism in the 3'-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens. Poult. Sci. 88:938-942. https://doi.org/10.3382/ps.2008-00453
  26. Li, Z. H., H. Li, H. Zhang, S. Z. Wang, Q. G. Wang, and Y. X. Wang. 2006. Identification of a single nucleotide polymorphism of the insulin-like growth factor binding protein 2 gene and its association with growth and body composition traits in the chicken. J. Anim. Sci. 84:2902-2906. https://doi.org/10.2527/jas.2006-144
  27. Miegueu, P., K. Cianflone, D. Richard, and D. H. St-Pierre. 2011. Motilin stimulates preadipocyte proliferation and differentiation and adipocyte lipid storage. Am. J. Physiol. Endocrinol. Metab. 301: E758-766. https://doi.org/10.1152/ajpendo.00089.2011
  28. Neglia, S., N. Arcamone, V. Esposito, and G. Gargiulo. 2004. Ghrelin in the gastroenteric tract of birds: immunoreactivity expression. Vet. Res. Commun. 28:213-215. https://doi.org/10.1023/B:VERC.0000045409.48367.c0
  29. Nie, Q., M. Fang, L. Xie, M. Zhou, Z. Liang, Z. Luo, G. Wang, W. Bi, C. Liang, W. Zhang, and X. Zhang. 2008. The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genet. 9:20.
  30. Ohshiro, H., M. Nonaka, and K. Ichikawa. 2008. Molecular identification and characterization of the dog motilin receptor. Regul. Pept. 146:80-87. https://doi.org/10.1016/j.regpep.2007.08.012
  31. Perez-Enciso, M. and I. Misztal. 2004. Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20:2792-2798. https://doi.org/10.1093/bioinformatics/bth331
  32. Poitras, P., P. Miller, D. Gagnon, and S. Stpierre. 1994. Motilin synthetic analogues and motilin receptor antagonists. Biochem. Biophys. Res. Commun. 205:449-454. https://doi.org/10.1006/bbrc.1994.2686
  33. Qu, J. T., S. Q. Tang, D. X. Sun, and Y. Zhang. 2009. Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88:722-727. https://doi.org/10.3382/ps.2008-00497
  34. Rikimaru, K. and H. Takahashi. 2007. A method for discriminating a Japanese brand of chicken, the Hinai-jidori, using microsatellite markers. Poult. Sci. 86:1881-1886. https://doi.org/10.1093/ps/86.9.1881
  35. Rikimaru, K., O. Sasaki, N. Koizumi, M. Komatsu, K. Suzuki, and H. Takahashi. 2011. Mapping of quantitative trait loci affecting growth traits in a Japanese native chicken cross. Asian-Aust. J. Anim. Sci. 24:1329-1334. https://doi.org/10.5713/ajas.2011.11004
  36. Rikimaru, K., M. Komatsu, K. Suzuki, Y. Uemoto, H. Takeda, and H. Takahashi. 2012. Association between cholecystokinin type A receptor haplotypes and growth traits in Japanese Hinai-dori crossbred chickens. Mol. Biol. Rep. 39:4479-4484. https://doi.org/10.1007/s11033-011-1237-9
  37. Rikimaru, K., H. Takeda, Y. Uemoto, M. Komatsu, K. Takahasi, D. Suzuki, and H. Takahashi. 2013. Effect of a single-nucleotide polymorphism in the cholecystokinin type A receptor gene on growth traits in the Hinai-dori chicken breed. J. Poult. Sci. 50: 206-211. https://doi.org/10.2141/jpsa.0120130
  38. Rosenfeld, D. J. and T. L. Garthwaite. 1987. Central administration of motilin stimulates feeding in rats. Physiol. Behav. 39:753-756. https://doi.org/10.1016/0031-9384(87)90261-7
  39. Science Council of Japan. 2006. Guidelines for proper conduct of animal experiments. Tokyo, Japan.
  40. Sigurdsson, S., H. H. Goring, G. Kristjansdottir, L. Milani, G. Nordmark, J. K. Sandling, M. L. Eloranta, D. Feng, N. Sangster-Guity, I. Gunnarsson, E. Svenungsson, G. Sturfelt, A. Jonsen, L. Truedsson, B. J. Barnes, G. Alm, L. Ronnblom, and A. C. Syvanen. 2008. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet. 17:872-881.
  41. Song, C., X. Gu, C. Feng, Y. Wang, Y. Gao, X. Hu, and N. Li. 2011. Evaluation of SNPs in the chicken HMGA2 gene as markers for body weight gain. Anim. Genet. 42:333-336. https://doi.org/10.1111/j.1365-2052.2010.02141.x
  42. Song, J., H. Ugai, I. Kanazawa, K. Sun, and K. K. Yokoyama. 2001. Independent repression of a GC-rich housekeeping gene by Sp1 and MAZ involves the same cis-elements. J. Biol. Chem. 276:19897-19904. https://doi.org/10.1074/jbc.M010658200
  43. Strausberg, R. L., E. A. Feingold, L. H. Grouse, J. G. Derge, R. D. Klausner, F. S. Collins, L. Wagner, C. M. Shenmen, G. D. Schuler, S. F. Altschul et al. 2002. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 99:16899-16903. https://doi.org/10.1073/pnas.242603899
  44. Tanaka, M., T. Miyazaki, I. Yamamoto, N Nakai, Y. Ohta, N. Tsushima, M. Wakita, and K. Shimada. 2003. Molecular characterization of chicken growth hormone secretagogue receptor gene. Gen. Comp. Endocrinol. 134:198-202. https://doi.org/10.1016/S0016-6480(03)00247-8
  45. UCSC Genome Browser Home. 2004. University of California, Santa Cruz, USA. http://genome.ucsc.edu Accessed June 2013.
  46. Uemoto, Y., S. Sato, T. Ohtake, S. Sato, Y. Okumura, and E. Kobayashi. 2011. Ornithine decarboxylase gene is a positional candidate gene affecting growth and carcass traits in F2 intercross chickens. Poult. Sci. 90:35-41. https://doi.org/10.3382/ps.2010-01119
  47. Vincent, J-P., J. Mazella, and P. Kitabgi. 1999. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 20:302-309. https://doi.org/10.1016/S0165-6147(99)01357-7
  48. Xu, L., I. Depoortere, M. Tang, and T. L. Peeters. 2001. Identification and expression of the motilin precursor in the guinea pig. FEBS Lett. 490:7-10. https://doi.org/10.1016/S0014-5793(01)02125-1
  49. Xu, L., I. Depoortere, L. Thielemans, Z. Huang, M. Tang, and T. L. Peeters. 2003. Sequence, distribution and quantification of the motilin precursor in the cat. Peptides 24:1387-1395. https://doi.org/10.1016/j.peptides.2003.09.005
  50. Yamamoto, I., H. Kaiya, C. Tsutsui, T. Sakai, A. Tsukada, M. Miyazato, and M. Tanaka. 2008. Primary structure, tissue distribution, and biological activity of chicken motilin receptor. Gen. Comp. Endocrinol. 156:509-514. https://doi.org/10.1016/j.ygcen.2008.03.007
  51. Zhang, H., S. H. Liu, Q. Zhang, Y. D. Zhang, S. Z. Wang, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2011. Fine-mapping of quantitative trait loci for body weight and bone traits and positional cloning of the RB1 gene in chicken. J. Anim. Breed. Genet. 128:366-375. https://doi.org/10.1111/j.1439-0388.2011.00927.x
  52. Zhang, W., L. Zhao, T. R. Lin, B. Chai, Y. Fan, I. Gantz, and M. W. Mulholland. 2004. Inhibition of adipogenesis by ghrelin. Mol. Biol. Cell 15:2484-2491. https://doi.org/10.1091/mbc.E03-09-0657
  53. Zhang, Z. R., Y. P. Liu, Y. G. Yao, X. S. Jiang, H. R. Du, and Q. Zhu. 2009. Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens. BMC Genet. 10:10.
  54. Zhou, H., A. D. Mitchell, J. P. McMurtry, C. M. Ashwell, and S. J. Lamont. 2005. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult. Sci. 84:212-219. https://doi.org/10.1093/ps/84.2.212
  55. Zigman, J.M., Y. Nakano, R. Coppari, N. Balthasar, J. N. Marcus, C. E. Lee, J. E. Jones, A. E. Deysher, A. R. Waxman, R. D. White, T. D. Williams, J. L. Lachey, R. J. Seeley, B. B. Lowell, and J. K. Elmquist. 2005. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115: 3564-3572. https://doi.org/10.1172/JCI26002

Cited by

  1. An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens vol.34, pp.12, 2017, https://doi.org/10.1093/molbev/msx227
  2. Epistatic effects between pairs of the growth hormone secretagogue receptor 1a, growth hormone, growth hormone receptor, non-SMC condensin I complex, subunit G and stearoyl-CoA desaturase genes on carcass, price-related and fatty acid composition traits i pp.13443941, 2017, https://doi.org/10.1111/asj.12947