DOI QR코드

DOI QR Code

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan ;
  • Kim, Hye-Jin ;
  • Kim, Tae-Il ;
  • Woo, Kyung Mi
  • Received : 2013.07.04
  • Accepted : 2013.07.09
  • Published : 2014.02.28

Abstract

Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.

Keywords

Collagen;Fibrin;Fibronectin;Osteoblast;Protein adsorption

References

  1. Lynch, M. P., Stein, J. L., Stein, G. S. and Lian, J. B. (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp. Cell. Res. 216, 35-45. https://doi.org/10.1006/excr.1995.1005
  2. Mizuno, M., Fujisawa, R. and Kuboki, Y. (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 184, 207-213. https://doi.org/10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U
  3. Moursi, A. M., Globus, R. K. and Damsky, C. H. (1997) Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell. Sci. 110, 2187-2196.
  4. Woo, K. M., Jun, J. H., Chen, V. J., Seo, J., Baek, J. H., Ryoo, H. M., Kim, G. S., Somerman, M. J. and Ma, P. X. (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28, 335-343. https://doi.org/10.1016/j.biomaterials.2006.06.013
  5. Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W. and Barnes, M. J. (2000) The collagen- binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35-40. https://doi.org/10.1074/jbc.275.1.35
  6. Oh, J. H., Seo, J., Yoon, W. J., Cho, J. Y., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2011) Suppression of Runx2 protein degradation by fibrous engineered matrix. Biomaterials 32, 5826-5836. https://doi.org/10.1016/j.biomaterials.2011.04.074
  7. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K. (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613-621. https://doi.org/10.1002/jbm.10167
  8. Ma, P. X. (2008) Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 60, 184-198. https://doi.org/10.1016/j.addr.2007.08.041
  9. Ahmed, T. A., Dare, E. V. and Hincke, M. (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue. Eng. Part B. Rev. 14, 199-215. https://doi.org/10.1089/ten.teb.2007.0435
  10. Laurens, N., Koolwijk, P. and de Maat, M. P. (2006) Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939. https://doi.org/10.1111/j.1538-7836.2006.01861.x
  11. Mosesson, M. W. (2005) Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3, 1894-1904. https://doi.org/10.1111/j.1538-7836.2005.01365.x
  12. Song, S. J., Pagel, C. N., Campbell, T. M., Pike, R. N. and Mackie, E. J. (2005) The role of protease-activated receptor- 1 in bone healing. Am. J. Pathol. 166, 857-868. https://doi.org/10.1016/S0002-9440(10)62306-1
  13. Karp, J. M., Sarraf, F., Shoichet, M. S. and Davies, J. E. (2004) Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. J. Biomed. Mater. Res. A. 71, 162-171.
  14. Bensaid, W., Triffitt, J. T., Blanchat, C., Oudina, K., Sedel, L. and Petite, H. (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24, 2497-2502. https://doi.org/10.1016/S0142-9612(02)00618-X
  15. Osathanon, T., Linnes, M. L., Rajachar, R. M., Ratner, B. D., Somerman, M. J. and Giachelli, C. M. (2008) Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29, 4091-4099. https://doi.org/10.1016/j.biomaterials.2008.06.030
  16. Oh, J. H., Kim, H. J., Kim, T. I., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2012) The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials 33, 4089-4099. https://doi.org/10.1016/j.biomaterials.2012.02.028
  17. Breen, A., O'Brien, T. and Pandit, A. (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue. Eng. Part B-Re. 15, 201-214.
  18. Wilson, C. J., Clegg, R. E., Leavesley, D. I. and Pearcy, M. J. (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 11, 1-18. https://doi.org/10.1089/ten.2005.11.1
  19. Marie, P. J. (2013) Targeting integrins to promote bone formation and repair. Nature reviews. Endocrinology 9, 288-295. https://doi.org/10.1038/nrendo.2013.4
  20. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  21. Flanagan, T. C., Cornelissen, C., Koch, S., Tschoeke, B., Sachweh, J. S., Schmitz-Rode, T. and Jockenhoevel, S. (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28, 3388-3397. https://doi.org/10.1016/j.biomaterials.2007.04.012
  22. Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M. D. and Franceschi, R. T. (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast- specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110. https://doi.org/10.1359/jbmr.2002.17.1.101
  23. Phillips, J. E., Hutmacher, D. W., Guldberg, R. E. and Garcia, A. J. (2006) Mineralization capacity of Runx2/ Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials 27, 5535-5545. https://doi.org/10.1016/j.biomaterials.2006.06.019
  24. Alston, S. M., Solen, K. A., Sukavaneshvar, S. and Mohammad, S. F. (2008) In vivo efficacy of a new autologous fibrin sealant. J. Surg. Res. 146, 143-148. https://doi.org/10.1016/j.jss.2007.08.006

Cited by

  1. Effects of the incorporation of ε-aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration vol.61, 2017, https://doi.org/10.1016/j.actbio.2017.07.039
  2. Fibrin as a delivery system in wound healing tissue engineering applications vol.196, 2014, https://doi.org/10.1016/j.jconrel.2014.09.023
  3. Comparative Evaluation of Fibrin for Bone Regeneration in Critical Size Calvarial Defects vol.39, pp.3, 2014, https://doi.org/10.11620/IJOB.2014.39.3.153
  4. Odisolane, a Novel Oxolane Derivative, and Antiangiogenic Constituents from the Fruits of Mulberry (Morus albaL.) vol.64, pp.19, 2016, https://doi.org/10.1021/acs.jafc.6b01461
  5. Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin vol.25, 2015, https://doi.org/10.1016/j.actbio.2015.07.045
  6. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112380
  7. Preformed Vascular Networks Survive and Enhance Vascularization in Critical Sized Cranial Defects pp.1937-335X, 2018, https://doi.org/10.1089/ten.tea.2017.0493