DOI QR코드

DOI QR Code

Store-operated Ca2+ entry in muscle physiology and diseases

  • Pan, Zui ;
  • Brotto, Marco ;
  • Ma, Jianjie
  • Received : 2014.01.13
  • Published : 2014.02.28

Abstract

$Ca^{2+}$ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled $Ca^{2+}$ influx into cells is store-operated $Ca^{2+}$ entry (SOCE), which is activated by the reduction of $Ca^{2+}$ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR $Ca^{2+}$ sensors and Orai proteins as $Ca^{2+}$ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.

Keywords

Aging;Junctophilin;Mitsugumin29;Muscular dystrophy;Muscle fatigue;Orai1;Sarcopenia;STIM1

References

  1. Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A. and Hogan, P. G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233. https://doi.org/10.1038/nature05122
  2. Putney, J. W. Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium. 7, 1-12. https://doi.org/10.1016/0143-4160(86)90026-6
  3. Zhang, S. L., Yu, Y., Roos, J., Kozak, J. A., Deerinck, T. J., Ellisman, M. H., Stauderman, K. A. and Cahalan, M. D. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902-905. https://doi.org/10.1038/nature04147
  4. Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E. Jr. and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235-1241. https://doi.org/10.1016/j.cub.2005.05.055
  5. Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J. A., Wagner, S. L., Cahalan, M. D., Velicelebi, G. and Stauderman, K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435-445. https://doi.org/10.1083/jcb.200502019
  6. Yeromin, A. V., Zhang, S. L., Jiang, W., Yu, Y., Safrina, O. and Cahalan, M. D. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229. https://doi.org/10.1038/nature05108
  7. Vig, M., Peinelt, C., Beck, A., Koomoa, D. L., Rabah, D., Koblan-Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R. and Kinet, J. P. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220-1223. https://doi.org/10.1126/science.1127883
  8. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., Lewis, R. S., Daly, M. and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185. https://doi.org/10.1038/nature04702
  9. Luik, R. M., Wu, M. M., Buchanan, J. and Lewis, R. S. (2006). The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815-825. https://doi.org/10.1083/jcb.200604015
  10. Huang, G. N., Zeng, W., Kim, J. Y., Yuan, J. P., Han, L., Muallem, S. and Worley, P. F. (2006). STIM1 carboxyl-terminus activates native SOC, I (crac) and TRPC1 channels. Nat. Cell Biol. 8, 1003-1010. https://doi.org/10.1038/ncb1454
  11. Rios, E., Pizarro, G. and Stefani, E. (1992). Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu. Rev. Physiol. 54, 109-133. https://doi.org/10.1146/annurev.ph.54.030192.000545
  12. McCarl, C. A., Picard, C., Khalil, S., Kawasaki, T., Rother, J., Papolos, A., Kutok, J., Hivroz, C., Ledeist, F., Plogmann, K., Ehl, S., Notheis, G., Albert, M. H., Belohradsky, B. H., Kirschner, J., Rao, A., Fischer, A. and Feske, S. (2009). ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124, 1311-1318 e1317. https://doi.org/10.1016/j.jaci.2009.10.007
  13. Kurebayashi, N. and Ogawa, Y. (2001). Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185-199. https://doi.org/10.1111/j.1469-7793.2001.0185b.x
  14. Pan, Z., Yang, D., Nagaraj, R. Y., Nosek, T. A., Nishi, M., Takeshima, H., Cheng, H. and Ma, J. (2002). Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379-383. https://doi.org/10.1038/ncb788
  15. Stiber, J., Hawkins, A., Zhang, Z. S., Wang, S., Burch, J., Graham, V., Ward, C. C., Seth, M., Finch, E., Malouf, N., Williams, R. S., Eu, J. P. and Rosenberg, P. (2008). STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688-697. https://doi.org/10.1038/ncb1731
  16. Picard, C., McCarl, C. A., Papolos, A., Khalil, S., Luthy, K., Hivroz, C., LeDeist, F., Rieux-Laucat, F., Rechavi, G., Rao, A., Fischer, A. and Feske, S. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971-1980. https://doi.org/10.1056/NEJMoa0900082
  17. Lewis, R. S. (2011). Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb. Perspect. Biol. 3 a003970.
  18. Putney, J. W. (2011). The physiological function of storeoperated calcium entry. Neurochem. Res. 36, 1157-1165. https://doi.org/10.1007/s11064-010-0383-0
  19. Feske, S. (2009). ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189-209. https://doi.org/10.1111/j.1600-065X.2009.00818.x
  20. Rios, E., Ma, J. J. and Gonzalez, A. (1991). The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Muscle. Res. Cell Motil. 12, 127-135. https://doi.org/10.1007/BF01774031
  21. Feske, S. (2010). CRAC channelopathies. Pflugers. Arch. 460, 417-435. https://doi.org/10.1007/s00424-009-0777-5
  22. Feske, S. (2011). Immunodeficiency due to defects in store-operated calcium entry. Ann. N. Y. Acad. Sci. 1238, 74-90. https://doi.org/10.1111/j.1749-6632.2011.06240.x
  23. Ma, J. and Pan, Z. (2003). Retrograde activation of storeoperated calcium channel. Cell Calcium. 33, 375-384. https://doi.org/10.1016/S0143-4160(03)00050-2
  24. Cota, G. and Stefani, E. (1989). Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J. Gen. Physiol. 94, 937-951. https://doi.org/10.1085/jgp.94.5.937
  25. Nakai, J., Dirksen, R. T., Nguyen, H. T., Pessah, I. N., Beam, K. G. and Allen, P. D. (1996). Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72-75. https://doi.org/10.1038/380072a0
  26. MacLennan, D. H. (2000). Ca2+ signalling and muscle disease. Eur. J. Biochem. 267, 5291-5297. https://doi.org/10.1046/j.1432-1327.2000.01566.x
  27. Hovnanian, A. (2007). SERCA pumps and human diseases. Subcell. Biochem. 45, 337-363. https://doi.org/10.1007/978-1-4020-6191-2_12
  28. MacLennan, D. H., Rice, W. J., Odermatt, A. and Green, N. M. (1998). Structure-function relationships in the Ca (2+)-binding and translocation domain of SERCA1: physiological correlates in Brody disease. Acta. Physiol. Scand. 643(Suppl), 55-67.
  29. Periasamy, M. and Kalyanasundaram, A. (2007). SERCA pump isoforms: their role in calcium transport and disease. Muscle. Nerve. 35, 430-442. https://doi.org/10.1002/mus.20745
  30. Bannister, R. A., Pessah, I. N. and Beam, K. G. (2009). The skeletal L-type Ca (2+) current is a major contributor to excitation-coupled Ca (2+) entry. J. Gen. Physiol. 133, 79-91. https://doi.org/10.1085/jgp.200810105
  31. Brotto, M. (2011). Aging, sarcopenia and store-operated calcium entry: a common link? Cell Cycle 10, 4201-4202. https://doi.org/10.4161/cc.10.24.18645
  32. Cherednichenko, G., Hurne, A. M., Fessenden, J. D., Lee, E. H., Allen, P. D., Beam, K. G. and Pessah, I. N. (2004). Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc. Natl. Acad. Sci. U. S. A. 101, 15793-15798. https://doi.org/10.1073/pnas.0403485101
  33. Zhao, X., Weisleder, N., Han, X., Pan, Z., Parness, J., Brotto, M. and Ma, J. (2006). Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J. Biol. Chem. 281, 33477-33486. https://doi.org/10.1074/jbc.M602306200
  34. Stiber, J. A. and Rosenberg, P. B. (2011). The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium. 49, 341-349. https://doi.org/10.1016/j.ceca.2010.11.012
  35. Dirksen, R. T. (2009). Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J. Physiol. 587, 3139-3147. https://doi.org/10.1113/jphysiol.2009.172148
  36. Yarotskyy, V. and Dirksen, R. T. (2012). Temperature and RyR1 regulate the activation rate of store-operated Ca (2)+ entry current in myotubes. Biophys J. 103, 202-211. https://doi.org/10.1016/j.bpj.2012.06.001
  37. Pan, Z., Zhao, X. and Brotto, M. (2012). Fluorescencebased measurement of store-operated calcium entry in live cells: from cultured cancer cell to skeletal muscle fiber. J. Vis. Exp. pii: 3415, doi: 10.3791/3415. https://doi.org/10.3791/3415
  38. Hirata, Y., Brotto, M., Weisleder, N., Chu, Y., Lin, P., Zhao, X., Thornton, A., Komazaki, S., Takeshima, H., Ma, J. and Pan, Z. (2006). Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys. J. 90, 4418-4427. https://doi.org/10.1529/biophysj.105.076570
  39. Hou, X., Pedi, L., Diver, M. M. and Long, S. B. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313. https://doi.org/10.1126/science.1228757
  40. Launikonis, B. S., Barnes, M. and Stephenson, D. G. (2003). Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc. Natl. Acad. Sci. U S. A. 100, 2941-2944. https://doi.org/10.1073/pnas.0536227100
  41. Zhao, X., Moloughney, J. G., Zhang, S., Komazaki, S. and Weisleder, N. (2012). Orai1 mediates exacerbated Ca (2+) entry in dystrophic skeletal muscle. PLoS One 7, e49862. https://doi.org/10.1371/journal.pone.0049862
  42. Launikonis, B. S. and Rios, E. (2007). Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J. Physiol. 583, 81-97. https://doi.org/10.1113/jphysiol.2007.135046
  43. Louis, M., Zanou, N., Van Schoor, M. and Gailly, P. (2008). TRPC1 regulates skeletal myoblast migration and differentiation. J. Cell Sci. 121, 3951-3959. https://doi.org/10.1242/jcs.037218
  44. Brinkmeier, H. (2011). TRP channels in skeletal muscle: gene expression, function and implications for disease. Adv. Exp. Med. Biol. 704, 749-758. https://doi.org/10.1007/978-94-007-0265-3_39
  45. Zhao, X., Weisleder, N., Thornton, A., Oppong, Y., Campbell, R., Ma, J. and Brotto, M. (2008). Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell 7, 561-568. https://doi.org/10.1111/j.1474-9726.2008.00408.x
  46. Lyfenko, A. D. and Dirksen, R. T. (2008). Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J. Physiol. 586, 4815-4824. https://doi.org/10.1113/jphysiol.2008.160481
  47. Wei-Lapierre, L., Carrell, E. M., Boncompagni, S., Protasi, F. and Dirksen, R. T. (2013). Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat. Commun. 4, 2805.
  48. Mo, C., Romero-Suarez, S., Bonewald, L., Johnson, M. and Brotto, M. (2012). Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent. Pat. Biotechnol. 6, 223-229. https://doi.org/10.2174/1872208311206030223
  49. Ma, J. and Pan, Z. (2003). Junctional membrane structure and store operated calcium entry in muscle cells. Front. Biosci. 8, d242-255. https://doi.org/10.2741/977
  50. Flucher, B. E., Takekura, H. and Franzini-Armstrong, C. (1993). Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev. Biol. 160, 135-147. https://doi.org/10.1006/dbio.1993.1292
  51. Darbellay, B., Arnaudeau, S., Bader, C. R., Konig, S. and Bernheim, L. (2011). STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J. Cell Biol. 194, 335-346. https://doi.org/10.1083/jcb.201012157
  52. Jahn, K., Lara-Castillo, N., Brotto, L., Mo, C. L., Johnson, M. L., Brotto, M. and Bonewald, L. F. (2012). Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur. Cell Mater. 24, 197-209. https://doi.org/10.22203/eCM.v024a14
  53. Takeshima, H., Shimuta, M., Komazaki, S., Ohmi, K., Nishi, M., Iino, M., Miyata, A. and Kangawa, K. (1998). Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. Biochem. J. 331(Pt 1), 317-322. https://doi.org/10.1042/bj3310317
  54. Zhao, X., Yamazaki, D., Kakizawa, S., Pan, Z., Takeshima, H. and Ma, J. (2011). Molecular architecture of Ca2+ signaling control in muscle and heart cells. Channels (Austin) 5, 391-396. https://doi.org/10.4161/chan.5.5.16467
  55. Komazaki, S., Nishi, M., Takeshima, H. and Nakamura, H. (2001). Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev. Growth Differ. 43, 717-723. https://doi.org/10.1046/j.1440-169X.2001.00609.x
  56. Nishi, M., Mizushima, A., Nakagawara, K. and Takeshima, H. (2000). Characterization of human junctophilin subtype genes. Biochem. Biophys. Res. Commun. 273, 920-927. https://doi.org/10.1006/bbrc.2000.3011
  57. Nishi, M., Komazaki, S., Kurebayashi, N., Ogawa, Y., Noda, T., Iino, M. and Takeshima, H. (1999). Abnormal features in skeletal muscle from mice lacking mitsugumin29. J. Cell Biol. 147, 1473-1480. https://doi.org/10.1083/jcb.147.7.1473
  58. Takeshima, H., Komazaki, S., Nishi, M., Iino, M. and Kangawa, K. (2000). Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11-22.
  59. Weisleder, N., Takeshima, H. and Ma, J. (2008). Immunoproteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium. 43, 1-8. https://doi.org/10.1016/j.ceca.2007.10.006
  60. Nishi, M., Sakagami, H., Komazaki, S., Kondo, H. and Takeshima, H. (2003). Coexpression of junctophilin type 3 and type 4 in brain. Brain Res. Mol. Brain Res. 118, 102-110. https://doi.org/10.1016/S0169-328X(03)00341-3
  61. Ito, K., Komazaki, S., Sasamoto, K., Yoshida, M., Nishi, M., Kitamura, K. and Takeshima, H. (2001). Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 154, 1059-1067. https://doi.org/10.1083/jcb.200105040
  62. Komazaki, S., Nishi, M. and Takeshima, H. (2003). Abnormal junctional membrane structures in cardiac myocytes expressing ectopic junctophilin type 1. FEBS Lett. 542, 69-73. https://doi.org/10.1016/S0014-5793(03)00340-5
  63. Pan, Z., Hirata, Y., Nagaraj, R. Y., Zhao, J., Nishi, M., Hayek, S. M., Bhat, M. B., Takeshima, H. and Ma, J. (2004). Co-expression of MG29 and ryanodine receptor leads to apoptotic cell death: effect mediated by intracellular Ca2+ release. J. Biol. Chem. 279, 19387-19390. https://doi.org/10.1074/jbc.C400030200
  64. Shin, D. W., Pan, Z., Kim, E. K., Lee, J. M., Bhat, M. B., Parness, J., Kim, D. H. and Ma, J. (2003). A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle. J. Biol. Chem. 278, 3286-3292. https://doi.org/10.1074/jbc.M209045200
  65. Woo, J. S., Cho, C. H., Kim do, H. and Lee, E. H. (2010). TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp. Mol. Med. 42, 614-627. https://doi.org/10.3858/emm.2010.42.9.061
  66. Woo, J. S., Hwang, J. H., Ko, J. K., Weisleder, N., Kim do, H., Ma, J. and Lee, E. H. (2010). S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle. Biochem. J. 427, 125-134. https://doi.org/10.1042/BJ20091225
  67. Woo, J. S., Hwang, J. H., Ko, J. K., Kim do, H., Ma, J. and Lee, E. H. (2009). Glutamate at position 227 of junctophilin-2 is involved in binding to TRPC3. Mol. Cell Biochem. 328, 25-32. https://doi.org/10.1007/s11010-009-0070-0
  68. Zhao, X., Min, C. K., Ko, J. K., Parness, J., Kim do, H., Weisleder, N. and Ma, J. (2010). Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin- 1 expression. Biophys. J. 99, 1556-1564. https://doi.org/10.1016/j.bpj.2010.06.050
  69. Yarotskyy, V., Protasi, F. and Dirksen, R. T. (2013). Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633. https://doi.org/10.1371/journal.pone.0077633
  70. Allen, D. G., Lamb, G. D. and Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287-332. https://doi.org/10.1152/physrev.00015.2007
  71. Zhao, X., Yoshida, M., Brotto, L., Takeshima, H., Weisleder, N., Hirata, Y., Nosek, T. M., Ma, J. and Brotto, M. (2005). Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics. 23, 72-78. https://doi.org/10.1152/physiolgenomics.00020.2005
  72. Thornton, A. M., Zhao, X., Weisleder, N., Brotto, L. S., Bougoin, S., Nosek, T. M., Reid, M., Hardin, B., Pan, Z., Ma, J., Parness, J. and Brotto, M. (2011). Store-operated Ca (2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging (Albany NY) 3, 621-634.
  73. Kiviluoto, S., Decuypere, J. P., De Smedt, H., Missiaen, L., Parys, J. B. and Bultynck, G. (2011). STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 1, 16. https://doi.org/10.1186/2044-5040-1-16
  74. Darbellay, B., Arnaudeau, S., Konig, S., Jousset, H., Bader, C., Demaurex, N. and Bernheim, L. (2009). STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J. Biol. Chem. 284, 5370-5380. https://doi.org/10.1074/jbc.M806726200
  75. Li, T., Finch, E. A., Graham, V., Zhang, Z. S., Ding, J. D., Burch, J., Oh-hora, M. and Rosenberg, P. (2012). STIM1-Ca (2+) signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol. Cell Biol. 32, 3009-3017. https://doi.org/10.1128/MCB.06599-11
  76. Zahn, J. M., Sonu, R., Vogel, H., Crane, E., Mazan-Mamczarz, K., Rabkin, R., Davis, R. W., Becker, K. G., Owen, A. B. and Kim, S. K. (2006). Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2, e115. https://doi.org/10.1371/journal.pgen.0020115
  77. Vanterpool, C. K., Pearce, W. J. and Buchholz, J. N. (2005). Advancing age alters rapid and spontaneous refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. J. Appl. Physiol. 99, 963-971. https://doi.org/10.1152/japplphysiol.00343.2005
  78. Bohm, J., Chevessier, F., Maues De Paula, A., Koch, C., Attarian, S., Feger, C., Hantai, D., Laforet, P., Ghorab, K., Vallat, J. M., Fardeau, M., Figarella-Branger, D., Pouget, J., Romero, N. B., Koch, M., Ebel, C., Levy, N., Krahn, M., Eymard, B., Bartoli, M. and Laporte, J. (2013). Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am. J. Hum. Genet. 92, 271-278. https://doi.org/10.1016/j.ajhg.2012.12.007
  79. Lowe, D. A., Husom, A. D., Ferrington, D. A. and Thompson, L. V. (2004). Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats. Mech. Ageing. Dev. 125, 619-627. https://doi.org/10.1016/j.mad.2004.07.002
  80. Parness, J., Bandschapp, O. and Girard, T. (2009). The myotonias and susceptibility to malignant hyperthermia. Anesth. Analg. 109, 1054-1064. https://doi.org/10.1213/ane.0b013e3181a7c8e5
  81. Duke, A. M., Hopkins, P. M., Calaghan, S. C., Halsall, J. P. and Steele, D. S. (2010). Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J. Biol. Chem. 285, 25645-25653. https://doi.org/10.1074/jbc.M110.104976
  82. Romanick, M., Thompson, L. V. and Brown-Borg, H. M. (2013) Murine models of atrophy, cachexia and sarcopenia in skeletal muscle. Biochim. Biophys. Acta. 1832, 1410-1420. https://doi.org/10.1016/j.bbadis.2013.03.011
  83. Lowe, D. A., Thomas, D. D. and Thompson, L. V. (2002). Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am. J. Physiol. Cell Physiol. 283, C187-192. https://doi.org/10.1152/ajpcell.00008.2002
  84. Romero-Suarez, S., Shen, J., Brotto, L., Hall, T., Mo, C., Valdivia, H. H., Andresen, J., Wacker, M., Nosek, T. M., Qu, C. K. and Brotto, M. (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2, 504-513.
  85. Russ, D. W., Gregg-Cornell, K., Conaway, M. J. and Clark, B. C. (2012). Evolving concepts on the age-related changes in "muscle quality". J. Cachexia. Sarcopenia. Muscle. 3, 95-109. https://doi.org/10.1007/s13539-011-0054-2
  86. Manini, T. M. and Clark, B. C. (2012). Dynapenia and aging: an update. J. Gerontol. A Biol. Sci. Med. Sci. 67, 28-40.
  87. Collins, H. E., Zhu-Mauldin, X., Marchase, R. B. and Chatham, J. C. (2013). STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am. J. Physiol. Heart. Circ. Physiol. 305, H446-458. https://doi.org/10.1152/ajpheart.00104.2013
  88. Ohba, T., Watanabe, H., Murakami, M., Sato, T., Ono, K. and Ito, H. (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 389, 172-176. https://doi.org/10.1016/j.bbrc.2009.08.117
  89. Touchberry, C. D., Elmore, C. J., Nguyen, T. M., Andresen, J. J., Zhao, X., Orange, M., Weisleder, N., Brotto, M., Claycomb, W. C. and Wacker, M. J. (2011). Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem. Biophys. Res. Commun. 416, 45-50. https://doi.org/10.1016/j.bbrc.2011.10.133
  90. Volkers, M., Dolatabadi, N., Gude, N., Most, P., Sussman, M. A. and Hassel, D. (2012). Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J. Cell Sci. 125, 287-294. https://doi.org/10.1242/jcs.090464
  91. Luo, X., Hojayev, B., Jiang, N., Wang, Z. V., Tandan, S., Rakalin, A., Rothermel, B. A., Gillette, T. G. and Hill, J. A. (2012). STIM1-dependent store-operated Ca (2) (+) entry is required for pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 52, 136-147. https://doi.org/10.1016/j.yjmcc.2011.11.003
  92. Voelkers, M., Salz, M., Herzog, N., Frank, D., Dolatabadi, N., Frey, N., Gude, N., Friedrich, O., Koch, W. J., Katus, H. A., Sussman, M. A. and Most, P. (2010). Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell Cardiol. 48, 1329-1334. https://doi.org/10.1016/j.yjmcc.2010.01.020

Cited by

  1. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry vol.984, 2017, https://doi.org/10.1016/j.aca.2017.07.024
  2. PharmGKB summary vol.26, pp.3, 2016, https://doi.org/10.1097/FPC.0000000000000198
  3. Localized nuclear and perinuclear Ca2+ signals in intact mouse skeletal muscle fibers vol.6, 2015, https://doi.org/10.3389/fphys.2015.00263
  4. Regulation of Store-Operated Ca2+ Entry by Septins vol.4, 2016, https://doi.org/10.3389/fcell.2016.00142
  5. Cannabinoid signalling inhibits sarcoplasmic Ca2+release and regulates excitation-contraction coupling in mammalian skeletal muscle vol.594, pp.24, 2016, https://doi.org/10.1113/JP272449
  6. Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus vol.27, pp.7, 2016, https://doi.org/10.1681/ASN.2014121200
  7. Mitsugumin 53 regulates extracellular Ca2+ entry and intracellular Ca2+ release via Orai1 and RyR1 in skeletal muscle vol.6, pp.1, 2016, https://doi.org/10.1038/srep36909
  8. PharmGKB summary vol.25, pp.12, 2015, https://doi.org/10.1097/FPC.0000000000000170
  9. Store-operated calcium entry and diabetic complications vol.241, pp.4, 2016, https://doi.org/10.1177/1535370215609693
  10. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation–contraction coupling vol.241, pp.8, 2016, https://doi.org/10.1177/1535370215619706
  11. Sarcolipin overexpression improves muscle energetics and reduces fatigue vol.118, pp.8, 2015, https://doi.org/10.1152/japplphysiol.01066.2014
  12. Store-operated calcium entry suppressed the TGF-β1/Smad3 signaling pathway in glomerular mesangial cells vol.313, pp.3, 2017, https://doi.org/10.1152/ajprenal.00483.2016
  13. Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-14134-0
  14. Handling vol.8, pp.2, 2017, https://doi.org/10.1101/cshperspect.a029710
  15. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00257
  16. Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis pp.1615-2573, 2018, https://doi.org/10.1007/s00380-018-1304-4
  17. Short-term high-glucose treatment decreased abundance of Orai1 protein through posttranslational mechanisms in rat mesangial cells vol.314, pp.5, 2018, https://doi.org/10.1152/ajprenal.00513.2017
  18. SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes vol.443, pp.1-2, 2018, https://doi.org/10.1007/s11010-017-3209-4
  19. leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance pp.1540-7748, 2019, https://doi.org/10.1085/jgp.201812152
  20. Blockade of Store-Operated Calcium Entry Reduces IL-17/TNF Cytokine-Induced Inflammatory Response in Human Myoblasts vol.9, pp.1664-3224, 2019, https://doi.org/10.3389/fimmu.2018.03170