DOI QR코드

DOI QR Code

6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납

Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy

  • 이승훈 (전북대학교 병원 방사선 종양학과) ;
  • 차석용 (전북대학교 병원 방사선 종양학과) ;
  • 이선영 (전북대학교 의학전문대학원 방사선종양학 교실)
  • 투고 : 2013.11.20
  • 심사 : 2014.01.14
  • 발행 : 2014.02.28

초록

고 에너지 전자선 치료에 있어서 차폐물질은 종양조직 외 정상조직이나 주요장기를 보호하기 위해 사용된다. 하지만 이러한 물질에서 발생되어지는 산란선은 심부선량에 영향을 줄 수 있으며, 물질원자번호에 따라 다르게 나타난다. 이에 차폐물질로써 사용가능한 알루미늄, 구리, 납 등의 다양한 원자번호 물질을 전하 감약율 95% 되는 두께로 하여 측정과 MCNPX 모의계산으로 산란율을 비교분석하였다. 산란선 영향을 많이 받는 표면의 선량변화율은 최대 물질두께에서 +0.88%, 원자번호에서 +0.43%의 영향을 받으며, 전하 감약율 95% 되는 두께의 알루미늄, 구리, 납 물질은 측정에서 +19.70%, +15.20%, +12.40% 계산에서 +25.00%, +15.10%, +13.70%를 보였다. 이로 인해 산란율은 물질두께가 원자번호보다 많은 영향을 주며, 산란전자가 광자보다 많은 기여를 하고 있음을 알 수 있었다. 이에 임상에서의 적절한 차폐물질은 두께영향 산란선이 적게 방출되는 고 원자번호물질이 적당하다고 사료된다.

키워드

산란전자;차폐물질;두께;원자번호;모의계산

참고문헌

  1. R. J. Berry, "Therapeutic uses of X-rays," Int J Radiat Biol, Vol.15, pp.873-895, 1985.
  2. H. S. Kaplan, "Historic milestones in radiobio logy and radiation therapy," Semin Oncol, Vol.6, No.4, pp.479-489, 1979.
  3. G. H. Fletcher, introduction. IN: Tapley N ed. Clinical applications of the electron beam, John Wiley & Sons, 1976.
  4. F. M. Khan, The physics of radiation therapy, 4th ed, Lippincott Williams & Wilkins, pp.241-314, 2010.
  5. S. C. Roy and G. A. Sandison, "Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beam," Med Phys, Vol.27, pp.1800-1803, 2000. https://doi.org/10.1118/1.1287438
  6. S. G. Prasad, K. Parthasaradhi, W. D. Bloomer, W. H. Al-Najjar, J. McMahon, and O. Thomson, "Aluminum, copper, tin and lead as shielding materials in the treatment of cancer with high energy electrons," Radi Phy Chemi, Vol.53, pp.361-366, 1998. https://doi.org/10.1016/S0969-806X(98)00130-3
  7. Xing and Aitang, "Dosimetric investigation of electron arc therapy delivered using siemens electron arc applicator with a trapezoidal aperture," University of Canterbury, pp.4-5, 2007.
  8. W. Pohlit and K. H. Manegold, "Electron beam dose distribution in inhomogeneous media". In: S. Kramer, N. Suntharalingam, G. F. Zinninger, eds. High energy photons and electrons, John Wiley & Sons, p.243, 1976.
  9. T. E. Everhart, "Simple theory concerning the reflection of electrons from solids," J. Appl Phys, Vol.31, No.8, pp1483-1490, 1960. https://doi.org/10.1063/1.1735868
  10. S. C. Klevenhagen, G. D. Lamdert, and A. Arbabi, "Backscattering in electron beam therapy for energies between 3 and 35MeV," Phys Med Biol, Vol.27, No.3, pp.363-373, 1982. https://doi.org/10.1088/0031-9155/27/3/003
  11. 이병용, 이상훈, 조병철, 김종훈, 최은경, 권수일, 장혜숙, "전리함 반응 함수의 직접 측정과 이를 이용한 방사선의 실제선량 분포측정", 대한방사선종양학회지, 제15권, 제1호, pp.65-69, 1997.
  12. R. A. Niroomand, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, "Radiochromic film dosimetry; Recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine," Med Phys, Vol.25, No.11, pp.2093-2115, 1998. https://doi.org/10.1118/1.598407
  13. ISP, "$Gafchromic^{(R)}$ EBT. Self-developing film for radiotherapy dosimetry," New Jersey USA, 2009.
  14. C. Fiandra, R. Ragona, U. Ricardi, S. Anglesio, and F. R. Giglioli, "Absolute and relative dose measurements with Gafchromic EBT film for high energy electron beam with different doses per pulse," Med Phys, Vol.35, No.12, pp.5463-5470, 2008. https://doi.org/10.1118/1.3005975
  15. A. Sankar, K. M. Ayyangar, R. M. Nehru, P. G. Kurup, V. Murali, C. A. Enke, and J. Velmurugan, "Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification," Med Dosi, Vol.31, No.4, pp.273-282, 2006. https://doi.org/10.1016/j.meddos.2006.06.001
  16. J. E. Barouky, N. Fournier-Bidoz, A. Mazal, G. Fares, and J. C. Rosenwald, "Practical use of Gafchromic EBT film in electron beam for in-phantom dose distribution measurements and monitor units verification," Phys Med, Vol.27, No.2, pp.81-88, 2011. https://doi.org/10.1016/j.ejmp.2010.04.001
  17. 이성아, 이정옥, 문성록, 원종진, 강정구, 김승곤, "6MeV 전자선의 측정과 모의계산에 대한 연구", 대한치료방사선과학회지, 제13권, 제3호, pp.285-289, 1995.
  18. T. Cheung, M. J. Butson, and P. K. Yu, "Postirradition colouration of Gafchromic EBT radiochromic film," Phys Med Biol, Vol.50, No.20, pp.N281-285, 2005. https://doi.org/10.1088/0031-9155/50/20/N04
  19. M. Martisikova, B. Ackermann, and O. Jakel, "Analysis of uncertainties in Gafchromic EBT dosimetry of photon beams," Phys Med Biol, Vol.53, No.24, pp.7013-7027, 2008. https://doi.org/10.1088/0031-9155/53/24/001
  20. 김상태, "영.유아의 입사피부선량 측정을 위한 몬테칼로 시뮬레이션", 한국콘텐츠학회논문지, 제12권, 제6호, pp.346-352, 2012
  21. M. K. Fix, H. Keller, P. Rugesegger, and E. J. Born, "Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy," Med Phys, Vol.27, No.12, pp.2739-2747, 2000. https://doi.org/10.1118/1.1318220
  22. D. B. Pelowitz and L. S. Waters, Ed. "$MCNPX^{TM}$ user's manual, version 2.6.0."Los Alamos National Laboratory, LA-CP-07-1473, 2008.
  23. R. Mohan, C. Chui, and L. Lidofsky, "Energy and angular distributions of photons from medical linear accelerators," Med Phys, Vol.12, No.5. pp.592-597, 1985. https://doi.org/10.1118/1.595680
  24. Y. H. Cho, "Monte-Carlo Estimate of photonuclear effects in radiation therapy using a high-energy photon beam," J. Korea Phy Soc, Vol.57, No.6, pp.1509-1515, 2010. https://doi.org/10.3938/jkps.57.1509
  25. 이정옥, 정동혁, "MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지 분포계산", 의학물리, 제17권, 제4호, pp.224-231, 2006.
  26. A. Zanini, E. Durisi, F. Fasolo, C. Ongaro, L. Visca, U. Nastasi, K. W. Burn, G. Scielzo, J. O. Adler, J. R. M. Annand, and G. Rosner, "Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems," Phys Med Biol, Vol.49, No.4, pp.571-582, 2004. https://doi.org/10.1088/0031-9155/49/4/008
  27. F. Haryanto, M. Fippel, W. Laub, O. Dohm, and F. Nusslin, "Investigation of photon beam output factors for conformal radiation therapy-Monte Carlo simulations and measurements," Phys Med Bio, Vol.47, No.11, pp.N133-N143, 2002. https://doi.org/10.1088/0031-9155/47/11/401
  28. J. C. Chow and A. M. Owrangi, "Depth dependence of electron backscatter: An energy spectral and dosimetry study using monte carlo simulation," Med Phys, Vol.36, No.2, pp.594-601, 2009. https://doi.org/10.1118/1.3062943
  29. M. G. Karlsson, M. Karlsson, and C. M. Ma, "Treatment head design for multileaf collimated high-energy electrons," Med Phys, Vol.26, No.10, pp.2161-2167, 1999. https://doi.org/10.1118/1.598732
  30. T. E. Everhart, "Simple theory concerning the reflection of electrons from solids," J. Appl Phys, Vol.31, No.8, pp.1483-1490, 1960. https://doi.org/10.1063/1.1735868
  31. K. Yue, W. Luo, X. Dong, C. Wang, G. Wu, M. Jiang, and Y. Zha, "A new lead-free radiation shielding material for radiotherapy," Radiat Prot Dosimetry, Vol.133, No.4, pp.256-260, 2009. https://doi.org/10.1093/rpd/ncp053
  32. Y. S. Tsai and V. Whitis, "Thick Target Bremsstrahlung And Target Consideration For Secondary Particle Production By Electrons," Phys Rev, Vol.149, pp.1248-1257, 1966. https://doi.org/10.1103/PhysRev.149.1248
  33. M. A. Hunt, G .J .Kutcher, and A. Buffa, "Electron backscatter corrections for parallel-plate chambers," Med Phys, Vol.15, No.1, pp.96-103, 1988. https://doi.org/10.1118/1.596165
  34. A. Shih, J. Yater, C. Hor, and R. Abrams, "Secondary electron emission studies," Appl Surf Sci, Vol.111, pp.251-258, 1997. https://doi.org/10.1016/S0169-4332(96)00729-5
  35. S. Sathiyan, M. Ravikumar, and S. S. Supe, "Measurement of backscattered dose at metallic interfaces using high energy electron beams," Rep Pract Oncol Radiother, Vol.11, pp.117-121, 2006. https://doi.org/10.1016/S1507-1367(06)71056-2