Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy

6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납

  • 이승훈 (전북대학교 병원 방사선 종양학과) ;
  • 차석용 (전북대학교 병원 방사선 종양학과) ;
  • 이선영 (전북대학교 의학전문대학원 방사선종양학 교실)
  • Received : 2013.11.20
  • Accepted : 2014.01.14
  • Published : 2014.02.28


During irradiation of lesions in cancer treatment with high energy electrons, normal tissue and critical organs are protected by the shielding material. Scattered radiation that generated the shielding materials affect the depth dose and atomic number. Therefore, we want to examine secondary particles and the scattered photons through calculation and its associated analysis, and compare the measurement for the aluminum, copper, and lead shielding substance of which thickness has 95% charge reduction. Dose change rate which effected scattering radiation was found to be +0.88% for material thickness, +0.43% for atomic number, and +19.70%, +15.20%, +12.40% for measurement, +25.00%, +15.10%, +13.70% for calculation on the aluminum, copper, and lead materials of which thickness has 95% charge reduction, respectively, As a result, we found that scattering rate was dependent on thickness than atomic number. In the dose increasing rate, scattered electrons are more important than scattered photon. For the above mentioned reasons, I think that high atomic number materials should be applied to reduce scattered radiation that generated with thickness effect.


Scattered Electron;Shielding Material;Thickness;Atomic Numder;Simulation


  1. R. J. Berry, "Therapeutic uses of X-rays," Int J Radiat Biol, Vol.15, pp.873-895, 1985.
  2. H. S. Kaplan, "Historic milestones in radiobio logy and radiation therapy," Semin Oncol, Vol.6, No.4, pp.479-489, 1979.
  3. G. H. Fletcher, introduction. IN: Tapley N ed. Clinical applications of the electron beam, John Wiley & Sons, 1976.
  4. F. M. Khan, The physics of radiation therapy, 4th ed, Lippincott Williams & Wilkins, pp.241-314, 2010.
  5. S. C. Roy and G. A. Sandison, "Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beam," Med Phys, Vol.27, pp.1800-1803, 2000.
  6. S. G. Prasad, K. Parthasaradhi, W. D. Bloomer, W. H. Al-Najjar, J. McMahon, and O. Thomson, "Aluminum, copper, tin and lead as shielding materials in the treatment of cancer with high energy electrons," Radi Phy Chemi, Vol.53, pp.361-366, 1998.
  7. Xing and Aitang, "Dosimetric investigation of electron arc therapy delivered using siemens electron arc applicator with a trapezoidal aperture," University of Canterbury, pp.4-5, 2007.
  8. W. Pohlit and K. H. Manegold, "Electron beam dose distribution in inhomogeneous media". In: S. Kramer, N. Suntharalingam, G. F. Zinninger, eds. High energy photons and electrons, John Wiley & Sons, p.243, 1976.
  9. T. E. Everhart, "Simple theory concerning the reflection of electrons from solids," J. Appl Phys, Vol.31, No.8, pp1483-1490, 1960.
  10. S. C. Klevenhagen, G. D. Lamdert, and A. Arbabi, "Backscattering in electron beam therapy for energies between 3 and 35MeV," Phys Med Biol, Vol.27, No.3, pp.363-373, 1982.
  11. 이병용, 이상훈, 조병철, 김종훈, 최은경, 권수일, 장혜숙, "전리함 반응 함수의 직접 측정과 이를 이용한 방사선의 실제선량 분포측정", 대한방사선종양학회지, 제15권, 제1호, pp.65-69, 1997.
  12. R. A. Niroomand, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, and C. G. Soares, "Radiochromic film dosimetry; Recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine," Med Phys, Vol.25, No.11, pp.2093-2115, 1998.
  13. ISP, "$Gafchromic^{(R)}$ EBT. Self-developing film for radiotherapy dosimetry," New Jersey USA, 2009.
  14. C. Fiandra, R. Ragona, U. Ricardi, S. Anglesio, and F. R. Giglioli, "Absolute and relative dose measurements with Gafchromic EBT film for high energy electron beam with different doses per pulse," Med Phys, Vol.35, No.12, pp.5463-5470, 2008.
  15. A. Sankar, K. M. Ayyangar, R. M. Nehru, P. G. Kurup, V. Murali, C. A. Enke, and J. Velmurugan, "Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification," Med Dosi, Vol.31, No.4, pp.273-282, 2006.
  16. J. E. Barouky, N. Fournier-Bidoz, A. Mazal, G. Fares, and J. C. Rosenwald, "Practical use of Gafchromic EBT film in electron beam for in-phantom dose distribution measurements and monitor units verification," Phys Med, Vol.27, No.2, pp.81-88, 2011.
  17. 이성아, 이정옥, 문성록, 원종진, 강정구, 김승곤, "6MeV 전자선의 측정과 모의계산에 대한 연구", 대한치료방사선과학회지, 제13권, 제3호, pp.285-289, 1995.
  18. T. Cheung, M. J. Butson, and P. K. Yu, "Postirradition colouration of Gafchromic EBT radiochromic film," Phys Med Biol, Vol.50, No.20, pp.N281-285, 2005.
  19. M. Martisikova, B. Ackermann, and O. Jakel, "Analysis of uncertainties in Gafchromic EBT dosimetry of photon beams," Phys Med Biol, Vol.53, No.24, pp.7013-7027, 2008.
  20. 김상태, "영.유아의 입사피부선량 측정을 위한 몬테칼로 시뮬레이션", 한국콘텐츠학회논문지, 제12권, 제6호, pp.346-352, 2012
  21. M. K. Fix, H. Keller, P. Rugesegger, and E. J. Born, "Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy," Med Phys, Vol.27, No.12, pp.2739-2747, 2000.
  22. D. B. Pelowitz and L. S. Waters, Ed. "$MCNPX^{TM}$ user's manual, version 2.6.0."Los Alamos National Laboratory, LA-CP-07-1473, 2008.
  23. R. Mohan, C. Chui, and L. Lidofsky, "Energy and angular distributions of photons from medical linear accelerators," Med Phys, Vol.12, No.5. pp.592-597, 1985.
  24. Y. H. Cho, "Monte-Carlo Estimate of photonuclear effects in radiation therapy using a high-energy photon beam," J. Korea Phy Soc, Vol.57, No.6, pp.1509-1515, 2010.
  25. 이정옥, 정동혁, "MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지 분포계산", 의학물리, 제17권, 제4호, pp.224-231, 2006.
  26. A. Zanini, E. Durisi, F. Fasolo, C. Ongaro, L. Visca, U. Nastasi, K. W. Burn, G. Scielzo, J. O. Adler, J. R. M. Annand, and G. Rosner, "Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems," Phys Med Biol, Vol.49, No.4, pp.571-582, 2004.
  27. F. Haryanto, M. Fippel, W. Laub, O. Dohm, and F. Nusslin, "Investigation of photon beam output factors for conformal radiation therapy-Monte Carlo simulations and measurements," Phys Med Bio, Vol.47, No.11, pp.N133-N143, 2002.
  28. J. C. Chow and A. M. Owrangi, "Depth dependence of electron backscatter: An energy spectral and dosimetry study using monte carlo simulation," Med Phys, Vol.36, No.2, pp.594-601, 2009.
  29. M. G. Karlsson, M. Karlsson, and C. M. Ma, "Treatment head design for multileaf collimated high-energy electrons," Med Phys, Vol.26, No.10, pp.2161-2167, 1999.
  30. T. E. Everhart, "Simple theory concerning the reflection of electrons from solids," J. Appl Phys, Vol.31, No.8, pp.1483-1490, 1960.
  31. K. Yue, W. Luo, X. Dong, C. Wang, G. Wu, M. Jiang, and Y. Zha, "A new lead-free radiation shielding material for radiotherapy," Radiat Prot Dosimetry, Vol.133, No.4, pp.256-260, 2009.
  32. Y. S. Tsai and V. Whitis, "Thick Target Bremsstrahlung And Target Consideration For Secondary Particle Production By Electrons," Phys Rev, Vol.149, pp.1248-1257, 1966.
  33. M. A. Hunt, G .J .Kutcher, and A. Buffa, "Electron backscatter corrections for parallel-plate chambers," Med Phys, Vol.15, No.1, pp.96-103, 1988.
  34. A. Shih, J. Yater, C. Hor, and R. Abrams, "Secondary electron emission studies," Appl Surf Sci, Vol.111, pp.251-258, 1997.
  35. S. Sathiyan, M. Ravikumar, and S. S. Supe, "Measurement of backscattered dose at metallic interfaces using high energy electron beams," Rep Pract Oncol Radiother, Vol.11, pp.117-121, 2006.