Structural Analysis Algorithm for Automatic Transcription 'Pansori'

판소리 자동채보를 위한 구조분석 알고리즘

  • 주영호 (전북대학교 전자정보공학부 컴퓨터공학) ;
  • 김준철 (서남대학교 전자공학과) ;
  • 서경숙 (전북도립국악원) ;
  • 이준환 (전북대학교 전자정보공학부 컴퓨터공학)
  • Received : 2013.10.14
  • Accepted : 2014.02.11
  • Published : 2014.02.28


For western music there has been a volume of researches on music information analysis for automatic transcription or content-based music retrieval. But it is hard to find the similar research on Korean traditional music. In this paper we propose several algorithms to automatically analyze the structure of Korean traditional music 'Pansori'. The proposed algorithm automatically distinguishes between the 'sound' part and 'speech' part which are named 'sori' and 'aniri', respectively, using the ratio of phonetic and pause time intervals. For rhythm called 'jangdan' classification the algorithm makes the robust decision using the majority voting process based on template matching. Also an algorithm is suggested to detect the bar positions in the 'sori' part based on Kalman filter. Every proposed algorithm in the paper works so well enough for the sample music sources of 'Pansori' that the results may be used to automatically transcribe the 'Pansori'.


Supported by : 한국연구재단


  2. Tao Li, Mitsunori Ogihara, and Qi Li, "A comparative study on content-based music genre classification," Proceedings of the 26thAnnualInternationalACM SIGIR Conference on Research and Development in Information Retrieval, pp.282-289, Toronto, Canada, 2003.
  3. C. Xu, N. C. Maddage, and X. Shao, "Automatic music classification and summarization," IEEE Trans. Speech Aud. Processing, Vol.13, No.3, pp.441-450, 2005(5).
  4. Marolt, "A Connectionist Approach to Automatic Transcription of Polyphonic Piano Music," IEEE Transactions on Multimedia, Vol.6, No.3, pp.439-449, 2004.
  5. Kenichi Miyamoto, Hirokazu Kameoka, Haruto Takeda, Takuya Nishimoto, and Shigeki Sagayama, "Probailistic Approach to Automatic Music Transcription from Audio Signals," Proceedings of IEEE Conf. on ASSP, Vol.2, pp.II-697-700, 2007(4).
  6. 장준영, 퍼지적분을 이용한 곡조 인식 시스템의 설계와 구현, KAIST 석사 학위 논문, 1996.
  7. 형아영, 이준환, "SIDE를 이용한 자동 음악채보시스템", 한국정보처리학회논문지, 제16권, 제2호, 2009.
  8. 박은종, 신송이, 이준환, "단일 음원 노래에서 음표의 조합 규칙을 이용한 마디 위치 찾기", 한국콘텐츠학회논문지, 제9권, 제10호, pp.1-12, 2009.
  9. 지정규, 오디오 데이터베이스의 효율적 검색을 위한 선율질의 처리기, 숭실대학교 박사학위 논문, 1998.
  10. 주영호, 바니야 바부카지, 이준환 "가변 템포를 고려한 자동음악 채보", 한국콘텐츠학회논문지, 제12권, 제11호, pp.9-19, 2012.
  11. 박형순, 성음 시각기를 이용한 판소리의 채보 연구, 전북대학교 석사 학위 논문, 2003.
  12. 백대웅, 한국 전통음악의 선율구조 개정판, 대광문화사, 1982.
  13. MYRON J. ROSS, "Average Magnitude Difference Function Pitch Extractor," IEEE Transcations on Acoustics, Speech, and Signal Processing, Vol.ASSP-22, No.5, 1974(10).
  14. R. Zhou and J. D. Reiss, "Music onset detection combining energy-based and pitch-based approaches," in Proc. 8th Int. Conf. Music Information Retrieval, 2007(9).
  15. B. Logan, "Mel frequency cepstral coefficients for music modeling," In Proc. Int. Symposium on Music Information Retrieval ISMIR, 2000.
  16. ETH Zurich, "The Discrete Fourier Transform, Part 6: Cross-Correlation," Journal of Object Technology, Vol.9, No.2, 2010(3-4).