DOI QR코드

DOI QR Code

Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

  • Kim, Mingyeong ;
  • Kim, Ick-Jun ;
  • Yang, Sunhye ;
  • Kim, Seok
  • Received : 2013.10.04
  • Accepted : 2013.11.18
  • Published : 2014.02.20

Abstract

In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate ($TEABF_4$)s to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M $TEABF_4$ PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

Keywords

Fluoroethylene carbonate;Organic electrolytes;Electrochemical property;Cyclic voltammetry;Capacitance

References

  1. Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  2. Park, S. K.; Park, S. J.; Kim, S. Bull. Korean Chem. Soc. 2012, 33, 4247. https://doi.org/10.5012/bkcs.2012.33.12.4247
  3. Oh, M. S.; Kim, S. Electrochim. Acta 2012, 78, 279. https://doi.org/10.1016/j.electacta.2012.05.109
  4. Kim J.; Kim, S. Carbon Letters 2012, 14, 51.
  5. Park, S. K.; Park, S. J.; Kim, S. Carbon Letters 2012, 13, 130. https://doi.org/10.5714/CL.2012.13.2.130
  6. Park, S. K; Kim, S. Electrochim. Acta 2013, 89, 516. https://doi.org/10.1016/j.electacta.2012.11.075
  7. Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. https://doi.org/10.1038/nmat2297
  8. Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11. https://doi.org/10.1016/j.jpowsour.2006.02.065
  9. Naoi, K.; Simon, P. Electrochem. Soc. Interface 2008, 17, 34.
  10. Ruch, P. W.; Cericola, D.; Foelske, A.; Kotz, R.; Wokaun, A. Electrochim. Acta 2010, 55, 2352. https://doi.org/10.1016/j.electacta.2009.11.098
  11. Perricone, E.; Chamas, M.; Cointeaux, L.; Lepretre, J.-C.; Judeinstein, P.; Azais, P.; Beguin, F.; Alloin, F. Electrochim. Acta 2013, 93, 1. https://doi.org/10.1016/j.electacta.2013.01.084
  12. Ue, M.; Takeda, M.; Takehara, M.; Mori, S. J. Electrochem. Soc. 1997, 144, 2684. https://doi.org/10.1149/1.1837882
  13. Ue, M. Electrochim. Acta 1994, 39, 2083. https://doi.org/10.1016/0013-4686(94)85092-5
  14. McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. J. Power Sources 1999, 81, 20.
  15. Liao, L.; Zuo, P.; Ma, Y.; An, Y.; Yin, G.; Gao, Y. Electrochim. Acta 2012, 74, 260. https://doi.org/10.1016/j.electacta.2012.04.085
  16. Klavetter, K. C.; Wood, S. M.; Lin, Y. M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J. W.; Heller, A.; Mullins, C. B. J. Power Sources 2013, 238, 123. https://doi.org/10.1016/j.jpowsour.2013.02.091
  17. Ryou, M. H.; Han, G. B.; Lee, Y. M.; Lee, J. N.; Lee, D. J.; Yoon, Y. O.; Park, J. K. Electrochim. Acta 2010, 55, 2073. https://doi.org/10.1016/j.electacta.2009.11.036
  18. Kim; K. S.; Park, S. J. Electrochim. Acta 2012, 65, 50. https://doi.org/10.1016/j.electacta.2012.01.009
  19. Nanbu, N.; Suzuki, K.; Yagi, N.; Sugahara, M.; Takehara, M.; Ue, M.; Sasaki, Y. Electrochem. 2007, 75, 607. https://doi.org/10.5796/electrochemistry.75.607
  20. Liao, L.; Cheng, X.; Ma, Y.; Zuo, P.; Fang, W.; Yin, G.; Gao, Y. Electrochim. Acta 2013, 87, 466. https://doi.org/10.1016/j.electacta.2012.09.083
  21. Park, S.; Ryu, J. H.; Oh, S. M. J. Electrochem. Soc. 2011, 158, A498. https://doi.org/10.1149/1.3561424
  22. Wang, D. Y.; Wu, X. D.; Wang, Z. X.; Chen, L. Q. J. Power Sources 2005, 140, 125. https://doi.org/10.1016/j.jpowsour.2004.06.059
  23. Zhang, S. S. J. Power Sources 2006, 162, 1379. https://doi.org/10.1016/j.jpowsour.2006.07.074
  24. Chen, L.; Wang, K.; Xie, X.; Xie, J. J. Power Sources 2007, 174, 538. https://doi.org/10.1016/j.jpowsour.2007.06.149
  25. Ota, H.; Sakata, Y.; Inoue, A.; Yamaguchi, S. J. Electrochem. Soc. 2004, 151, A1659. https://doi.org/10.1149/1.1785795
  26. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. Electrochim. Acta 2002, 47, 1423. https://doi.org/10.1016/S0013-4686(01)00858-1
  27. Moller, K. C.; Santner, H. J.; Kern, W.; Yamaguchi, S.; Besenhard, J. O.; Winter, M. J. Power Sources 2003, 561, 199.
  28. Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S. J. Power Sources 2002, 108, 128. https://doi.org/10.1016/S0378-7753(02)00012-5
  29. Jeong, S. K.; Inaba, M.; Mogi, R.; Iriyama, Y.; Abe, T.; Ogumi, Z. Langmuir 2001, 17, 8281. https://doi.org/10.1021/la015553h

Cited by

  1. Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.070