DOI QR코드

DOI QR Code

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih (Department of Civil Engineering, Faculty of Engineering, Istanbul University)
  • Received : 2013.08.22
  • Accepted : 2013.10.28
  • Published : 2014.02.25

Abstract

In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

Keywords

structural control;PID controller;feedback control;earthquake excitation

References

  1. Abdel-Rohman, M. and Leipholz, H.H. (1978), "Structural control by pole assignment method", J. Eng. Mech. Div. - ASCE, 104(5), 1159-1175.
  2. Abdel-Rohman, M. and Leipholz, H.H.E. (1979), "General approach to active structural control", J. Eng. Mech. Div. - ASCE, 105(6), 1007-1023.
  3. Abdel-Rohman, M. and Leipholz, H.H. (1983), "Active control of tall buildings", J. Struct. Eng. - ASCE, 109(3), 628-645. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(628)
  4. Adeli, H. and Saleh, A. (1997), "Optimal control of adaptive/smart bridge structures", J. Struct. Eng. - ASCE, 123(2), 218-226. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(218)
  5. Adeli, H. and Saleh, A. (1998), "Integrated structural/control optimization of large adaptive/smart structures", Int. J. Solids Struct., 35(28-29), 3815-3830. https://doi.org/10.1016/S0020-7683(97)00220-5
  6. Adeli, H. and Kim, H. (2004), "Wavelet-hybrid feedback least mean square algorithm for robust control of structures", J. Struct. Eng. - ASCE, 130(1), 128-137. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(128)
  7. Aldemir, U. (2010), "A simple active control algorithm for earthquake excited structures", Comput. Aid. Civil Infrastruct. Eng., 25(3), 218-225. https://doi.org/10.1111/j.1467-8667.2009.00629.x
  8. Amini, F. and Ghaderi, P. (2013), "Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers", Appl. Soft Comput., 13(5), 2272-2280. https://doi.org/10.1016/j.asoc.2013.02.001
  9. Aldemir, U., Bakioglu, M. and Akhiev, S.S. (2001), "Optimal control of linear buildings under seismic excitations", Earthq. Eng.Struct. Dyn., 30(6), 835-851. https://doi.org/10.1002/eqe.41
  10. Aldemir, U., Yanik, A. and Bakioglu, M. (2012), "Control of structural response under earthquake excitation", Comput. Aid. Civil Infrastruct. Eng., 27(8), 620-638. https://doi.org/10.1111/j.1467-8667.2012.00776.x
  11. Alivinasab, A. and Moharrami, H. (2006), "Active control of structures using energy-based LQR method", Comput. Aid. Civil Infrastruct. Eng., 21(8), 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x
  12. Arfiadi, Y. and Hadi, M.N.S. (2000), "Passive and active control of three-dimensional buildings", Earthq. Eng. Struct. Dyn., 29(3), 377-396. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<377::AID-EQE911>3.0.CO;2-C
  13. Aydin, E. and Boduroglu, M.H. (2008), "Optimal placement of steel diagonal braces for upgrading the seismic capacity of existing structures and its comparison with optimal dampers", J. Constr. Steel Res., 64(1), 72-86. https://doi.org/10.1016/j.jcsr.2007.04.005
  14. Aydin, E., Boduroglu, M.H. and Guney, D. (2007), "Optimal damper distribution for seismic rehabilitation of planar building structures", Eng. Struct., 29(2), 176-185. https://doi.org/10.1016/j.engstruct.2006.04.016
  15. Bakioglu, M. and Aldemir, U. (2001), "A new numerical algorithm for sub-optimal control of earthquake excited linear structures", Int. J. Numer. Method. Eng., 50(12), 2601-2616. https://doi.org/10.1002/nme.137
  16. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  17. Bitaraf, M., Hurlebaus, S. and Barroso, L.R. (2012), "Active and semi-active adaptive control for undamaged and damaged building structures under seismic load", Comput. Aid. Civil Infrastruct. Eng., 27(1), 48-64. https://doi.org/10.1111/j.1467-8667.2011.00719.x
  18. Chung, L.L., Lin, R.C., Soong, T.T. and Reinhorn, A.M. (1989), "Experimental study of active control for MDOF seismic structures", J. Eng. Mech. - ASCE, 115(8), 1609-1627. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)
  19. Cha, Y.J., Kim, Y., Raich, A.M. and Agrawal, A.K. (2013), "Multi-objective optimization for actuator and sensor layouts of actively controlled 3D buildings", J. Vib. Control, 19(6), 942-960. https://doi.org/10.1177/1077546311430105
  20. Chang, C.C. and Lin, C. (2009), "$H_{\infty}$ drift control of time-delayed seismic structures", Earthq. Eng. Eng. Vib., 8(4), 617-626. https://doi.org/10.1007/s11803-009-9117-1
  21. Chung, L.L. (1999), "Modified predictive control of structures", Eng. Struct., 21(12), 1076-1085. https://doi.org/10.1016/S0141-0296(98)00055-8
  22. Chung, L.L., Reinhorn, A.M. and Soong, T.T. (1988), "Experiments on active control of seismic structures", J. Eng. Mech. - ASCE, 114(2), 241-255. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:2(241)
  23. Chung, L.L., Wang, Y.P. and Tung, C.C. (1997), "Instantaneous control of structures with time-delay consideration", Eng. Struct., 19(6), 465-475. https://doi.org/10.1016/S0141-0296(96)00079-X
  24. Chung, L.L., Wu, L.Y. and Jin, T.G. (1998), "Acceleration feedback control of seismic structures", Eng. Struct., 20(1-2), 62-74. https://doi.org/10.1016/S0141-0296(97)00060-6
  25. De Cock, K., De Moor, B., Minten, W., Van Brempt, W. and Verrelst, H. (1997), "A tutorial on PIDcontrol", ESAT-SISTA /TR 1997-08, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
  26. Guclu, R. (2006), "Sliding mode and PID control of a structural system against earthquake", Math. Comput. Model., 44(1-2), 210-217. https://doi.org/10.1016/j.mcm.2006.01.014
  27. Hadi, M.N.S. and Arfiadi, Y. (1998), "Optimum design of absorber for MDOF structures", J. Struct. Eng. - ASCE, 124(11), 1272-1280. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272)
  28. Kim, H. and Adeli, H. (2005a), "Wavelet hybrid feedback-lms algorithm for robust control of cable-stayed bridges", J. Bridge Eng., 10(2), 116-123. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:2(116)
  29. Jiang, X. and Adeli, H. (2008a), "Dynamic fuzzy wavelet neuroemulator for nonlinear control of irregular highrise building structures", International Journal for Numerical Methods in Engineering, 74(7), 1045-1066. https://doi.org/10.1002/nme.2195
  30. Jiang, X. and Adeli, H. (2008b), "Neuro-genetic algorithm for nonlinear active control of highrise buildings", Int. J. Numer. Method. Eng., 75(7), 770-786. https://doi.org/10.1002/nme.2274
  31. Kim, H. and Adeli, H. (2004), "Hybrid feedback-least mean square algorithm for structural control", J. Struct. Eng. - ASCE, 130(1), 120-127. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(120)
  32. Kim, H. and Adeli, H. (2005b), "Hybrid control of smart structures using a novel wavelet-based algorithm", Comput. Aid. Civil Infrastruct. Eng., 20(11), 7-22. https://doi.org/10.1111/j.1467-8667.2005.00373.x
  33. Kim, H. and Adeli, H. (2005c), "Hybrid control of irregular steel highrise building structures under seismic excitations", Int. J. Numer. Method. Eng., 63(12), 1757-1774. https://doi.org/10.1002/nme.1336
  34. Lei, Y., Wu, D.T. and Lin, Y. (2012), "A decentralized control algorithm for large-scale building structures", Comput. Aid. Civil Infrastruct. Eng., 27(1), 2-13. https://doi.org/10.1111/j.1467-8667.2010.00707.x
  35. Lin, C., Chang, C. and Wang, J. (2010), "Active control of irregular buildings considering soil-structure interaction effects", Soil Dyn. Earthq. Eng., 30(3), 98-109. https://doi.org/10.1016/j.soildyn.2009.09.005
  36. Lin, C.M., Ting, A.B., Hsu, C.F. and Chung, C.M. (2012), "Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural network", Int. J. Neural Syst., 22(1), 37-50. https://doi.org/10.1142/S0129065712002992
  37. Lopez-Almansa, F. and Rodellar, J. (1989) "Control systems of building structures by active cables", J. Struct. Eng. - ASCE, 115(11), 2897-2913. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2897)
  38. Nigdeli, S.M. and Bekdas, G. (2013), "Optimum tuned mass damper design for preventing brittle fracture of RC buildings", Smart Struct. Syst., 12(2), 137-155. https://doi.org/10.12989/sss.2013.12.2.137
  39. Mei, G., Kareem, A. and Kantor, J.C. (2002), "Model predictive control of structures under earthquakes using acceleration feedback", J. Eng. Mech., 128(5), 574-585. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(574)
  40. Min, K.W., Chung, L. and Park, J.H. (2005), "Probabilistic approach for nonlinear modal control of MDOF structures subjected to multiple excitations", Comput. Aid. Civil Infrastruct. Eng., 20(1), 23-34. https://doi.org/10.1111/j.1467-8667.2005.00374.x
  41. Murakami, Y., Noshi, K., Fujita, K., Tsuji, M. and Takewaki, I. (2013), "Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers", Earthq. Struct., 5(3), 261-276. https://doi.org/10.12989/eas.2013.5.3.261
  42. Nigdeli, S.M. and Boduroglu, M.H. (2013), "Active tendon control of torsionally irregular structures under near-fault ground motion excitation", Comput. Aid. Civil Infrastruct. Eng., 28(9), 718-736. https://doi.org/10.1111/mice.12046
  43. Nomura, Y., Furuta, H. and Hirokane, M. (2007), "An integrated fuzzy control system for structural vibration", Comput. Aid. Civil Infrastruct. Eng., 22(4), 306-316. https://doi.org/10.1111/j.1467-8667.2007.00487.x
  44. Ozbulut, O.E. and Hurlebaus, S. (2011), "Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes", Earthq. Eng. Struct. Dyn., 40(3), 273-291. https://doi.org/10.1002/eqe.1022
  45. PEER, "http://peer.berkeley.edu/nga", Pacific Earthquake Engineering Resource Center, University of California, Berkeley, CA, USA.
  46. Saleh, A. and Adeli, H. (1994), "Parallel algorithms for integrated structural and control optimization", J. Aerospace Eng., 7(3), 297-314. https://doi.org/10.1061/(ASCE)0893-1321(1994)7:3(297)
  47. Reinhorn, A.M., Soong, T.T., Lin, R.C., Wang, Y.P., Fukao, Y., Abe, H. and Nakai, M. (1989), "1:4 Scale Model Studies of Active Tendon Systems And Active Mass Dampers for Aseismic Protection", Technical Report NCEER-89-0026, National Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.
  48. Roorda, J. (1975), "Tendon control in tall structures", J. Struct. Div. - ASCE, 101(3), 505-521.
  49. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  50. Saleh, A. and Adeli, H. (1996), "Parallel eigenvalue algorithms for large-scale control-optimization problems", J. Aerospace Eng., 9(3), 70-79. https://doi.org/10.1061/(ASCE)0893-1321(1996)9:3(70)
  51. Saleh, A. and Adeli, H. (1997), "Robust parallel algorithms for solution of the Riccati equation", J. Aerospace Eng., 10(3), 126-133. https://doi.org/10.1061/(ASCE)0893-1321(1997)10:3(126)
  52. Saleh, A. and Adeli, H. (1998), "Optimal control of adaptive/smart building structures", Comput. Aid. Civil Infrastruct. Eng., 13(6), 389-403. https://doi.org/10.1111/0885-9507.00117
  53. Samali, B., Yang, J.N. and Liu, S.C. (1985), "Active control of seismic-excited buildings", J. Struct. Eng. - ASCE, 111(10), 2165-2180. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:10(2165)
  54. Suresh, S., Narasimhan, S., Nagarajaiah, S. and Sundararajan, N. (2010), "Fault-tolerant adaptive control of nonlinear base-isolated buildings using EMRAN", Eng. Struct., 32(8), 2477-2487. https://doi.org/10.1016/j.engstruct.2010.04.024
  55. Takewaki, I. (2000), "Optimum damper placement for planar building frames using transfer functions", Struct. Multidiscip. O., 20(4), 280-287. https://doi.org/10.1007/s001580050158
  56. Yang, J.N. and Samali, B. (1983), "Control of tall buildings in along-wind motion", J. Struct. Eng. - ASCE, 109(1), 50-68. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(50)
  57. Takewaki, I. (2009), Building control with passive dampers: optimal performance-based design for earthquakes, John Wiley & Sons Ltd. (Asia).
  58. The MathWorks Inc. (2010), MATLAB R2010a, Natick, MA, USA.
  59. Yang, J.N. and Giannopoulos, F. (1978), "Active tendon control of structures", J. Eng. Mech. Div. - ASCE, 104(3), 551-568.
  60. Yao, J.T.P. (1972), "Concept of structural control", J. Struct. Control - ASCE, 98, 1567-1574.
  61. Ziegler, J.G. and Nichols, N.B. (1942), "Optimum settings for automatic controllers", Trans. ASME, 64, 759-768.
  62. Zuk, W. (1968), "Kinetik structures", Civil Eng., 39(12), 62-64.

Cited by

  1. Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach vol.67, 2017, https://doi.org/10.1016/j.isatra.2017.01.012
  2. A new modified independent modal space control approach toward control of seismic-excited structures vol.15, pp.10, 2017, https://doi.org/10.1007/s10518-017-0134-6
  3. A method for bidirectional active control of structures 2017, https://doi.org/10.1177/1077546317705556
  4. A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD 2017, https://doi.org/10.1007/s11709-016-0382-6
  5. Seismic Control of High-Rise Buildings Equipped with ATMD Including Soil-Structure Interaction Effects vol.12, pp.03, 2018, https://doi.org/10.1142/S1793431118500100