DOI QR코드

DOI QR Code

Anti-Inflammatory Activity of the Solvent-Partitioned Fractions from Spergularia marina in LPS-Stimulated RAW 264.7 Cells

  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Science, Silla University)
  • Received : 2014.08.01
  • Accepted : 2014.10.02
  • Published : 2014.12.31

Abstract

As a part of ongoing research to elucidate and characterize antioxidant and anti-inflammatory nutraceuticals, solvent-partitioned fractions from Spergularia marina were tested for their ability to scavenge radicals and suppress inflammation. The results of the 2',7'-dichlorofluorescein diacetate assay indicate that solvent-partitioned fractions from S. marina scavenged intracellular radicals in $H_2O_2$-stimulated mouse macrophages. The tested fractions decreased the generation of nitric oxide (NO) and the expression of inflammation mediators, namely, inducible nitric oxide synthase (iNOS) and interleukin (IL)-6, by lipopolysaccharide (LPS)-induced mouse macrophages, indicating that S. marina decreases inflammation. Among all tested fractions [i.e., $H_2O$, n-buthanol (n-BuOH), 85% aqueous methanol (aq. MeOH), and n-hexane], the 85% aq. MeOH fraction showed the strongest antioxidant and anti-inflammatory response. The 85% aq. MeOH fraction scavenged 80% of the free radicals produced by $H_2O_2$-induced control cells. In addition, NO production was 98% lower in 85% aq. MeOH fraction-treated cells compared to LPS-induced control cells. The mRNA expression of iNOS and IL-6 was also suppressed in 85% aq. MeOH fraction-treated cells. The results of the current study suggest that the phenolic compound components of S. marina are responsible for its antioxidant and anti-inflammatory effects.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Berlett BS, Stadtman ER. 1997. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  2. Mayne ST. 2003. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 133: 933S-940S.
  3. Holvoet P. 2008. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh K Acad Geneeskd Belg 70: 193-219.
  4. Elmarakby AA, Sullivan JC. 2012. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30: 49-59. https://doi.org/10.1111/j.1755-5922.2010.00218.x
  5. Khansari N, Shakiba Y, Mahmoudi M. 2009. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3: 73-80. https://doi.org/10.2174/187221309787158371
  6. Cadenas E, Davies KJ. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29: 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  7. Conner EM, Grisham MB. 1996. Inflammation, free radicals, and antioxidants. Nutrition 12: 274-277. https://doi.org/10.1016/S0899-9007(96)00000-8
  8. Geronikaki AA, Gavalas AM. 2006. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen 9: 425-442. https://doi.org/10.2174/138620706777698481
  9. Nichols JA, Katiyar SK. 2010. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302: 71-83. https://doi.org/10.1007/s00403-009-1001-3
  10. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. 2004. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10: 3813-3833. https://doi.org/10.2174/1381612043382710
  11. de las Heras B, Slowing K, Benedi J, Carretero E, Ortega T, Toledo C, Bermejo P, Iglesias I, Abad MJ, Gomez-Serranillos P, Liso PA, Villar A, Chiriboga X. 1998. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J Ethnopharmacol 61: 161-166. https://doi.org/10.1016/S0378-8741(98)00029-4
  12. Schinella GR, Tournier HA, Prieto JM, Mordujovich de Buschiazzo P, Rios JL. 2002. Antioxidant activity of anti-inflammatory plant extracts. Life Sci 70: 1023-1033. https://doi.org/10.1016/S0024-3205(01)01482-5
  13. Talhouk RS, Karam C, Fostok S, El-Jouni W, Barbour EK. 2007. Anti-inflammatory bioactivities in plant extracts. J Med Food 10: 1-10. https://doi.org/10.1089/jmf.2005.055
  14. Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol 179: 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
  15. Amor NB, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C. 2006. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126: 446-457. https://doi.org/10.1111/j.1399-3054.2006.00620.x
  16. Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C. 2008. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331: 865-873. https://doi.org/10.1016/j.crvi.2008.07.024
  17. Kim YA, Kong CS, Um YR, Lim SY, Yea SS, Seo Y. 2009. Evaluation of Salicornia herbacea as a potential antioxidant and anti-inflammatory agent. J Med Food 12: 661-668. https://doi.org/10.1089/jmf.2008.1072
  18. De Tommasi N, Piacente S, Gacs-Baitz E, De Simone F, Pizza C, Aquino R. 1998. Triterpenoid saponins from Spergularia ramosa. J Nat Prod 61: 323-327. https://doi.org/10.1021/np970398l
  19. Jouad H, Lacaille-Dubois MA, Lyoussi B, Eddouks M. 2001. Effects of the flavonoids extracted from Spergularia purpurea Pers. on arterial blood pressure and renal function in normal and hypertensive rats. J Ethnopharmacol 76: 159-163. https://doi.org/10.1016/S0378-8741(01)00209-4
  20. Vinholes J, Grosso C, Andrade PB, Gil-Izquierdo A, Valentao P, Pinho PGd, Ferreres F. 2011. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem 129: 454-462. https://doi.org/10.1016/j.foodchem.2011.04.098
  21. Eddouks M, Jouad H, Maghrani M, Lemhadri A, Burcelin R. 2003. Inhibition of endogenous glucose production accounts for hypoglycemic effect of Spergularia purpurea in streptozotocin mice. Phytomedicine 10: 594-599. https://doi.org/10.1078/094471103322331890
  22. Jouad H, Lacaille-Dubois MA, Eddouks M. 2001. Chronic diuretic effect of the water extract of Spergularia purpurea in normal rats. J Ethnopharmacol 75: 219-223. https://doi.org/10.1016/S0378-8741(01)00193-3
  23. Jouad H, Lemhadri A, Maghrani M, Zeggwagh NA, Eddouks M. 2003. Cholesterol-lowering activity of the aqueous extract of Spergularia purpurea in normal and recent-onset diabetic rats. J Ethnopharmacol 87: 43-49. https://doi.org/10.1016/S0378-8741(03)00102-8
  24. Skerget M, Kotnik P, Hadolin M, Hras AR, Simonic M, Knez Z. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89: 191-198. https://doi.org/10.1016/j.foodchem.2004.02.025
  25. Bertin RL, Gonzaga LV, Borges GSC, Azevedo MS, Maltez HF, Heller M, Micke GA, Tavares LBB, Fett R. 2014. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC-ESI-MS/MS. Food Res Int 55: 404-411. https://doi.org/10.1016/j.foodres.2013.11.036
  26. Meng F, Lowell CA. 1997. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185: 1661-1670. https://doi.org/10.1084/jem.185.9.1661
  27. Hori M, Kita M, Torihashi S, Miyamoto S, Won KJ, Sato K, Ozaki H, Karaki H. 2001. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 280: G930-G938.
  28. Pahl HL. 1999. Activators and target genes of Rel/NF-${\kappa}B$ transcription factors. Oncogene 18: 6853-6866. https://doi.org/10.1038/sj.onc.1203239
  29. Yamamoto Y, Gaynor RB. 2001. Role of the NF-${\kappa}B$ pathway in the pathogenesis of human disease states. Curr Mol Med 1: 287-296. https://doi.org/10.2174/1566524013363816
  30. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Munch G, Wu MJ. 2011. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem 59: 12361-12367. https://doi.org/10.1021/jf203146e

Cited by

  1. Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1450
  2. Anti-inflammatory Activity of Hizikia fusiformis Extracts Fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 Macrophages vol.30, pp.1, 2015, https://doi.org/10.7841/ksbbj.2015.30.1.38
  3. Changes in Antioxidant and Cancer Cell Growth Inhibitory Activities of Spergularia marina Griseb Extract according to Different Cooking Methods vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.673
  4. Changes in the physicochemical characteristics of low-salt Doenjang by addition of halophytes vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.819