DOI QR코드

DOI QR Code

Molecular Mechanisms of Casticin Action: an Update on its Antitumor Functions

  • Rasul, Azhar (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University) ;
  • Zhao, Bin-Ji (Second Hospital, Jilin University) ;
  • Liu, Jun (Second Hospital, Jilin University) ;
  • Liu, Bao (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University) ;
  • Sun, Jia-Xin (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University) ;
  • Li, Jiang (Dental Hospital, Jilin University) ;
  • Li, Xiao-Meng (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University)
  • Published : 2014.11.28

Abstract

Casticin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone) is an active compound isolated from roots, stems, leaves, fruits and seeds of a variety of plants. It is well known for its pharmacological properties and has been utilized as an anti-hyperprolactinemia, anti-tumor, anti-inflammatory, neuroprotetective, analgesic and immunomodulatory agent. Recently, the anticancer activity of casticin has been extensively investigated. The resulkts showed that it exerts protective potential by targeting apoptosis, considered important for cancer therapies. In this article, our aim was to review the pharmacological and therapeutic applications of casticin with specific emphasis on its anticancer functions and related molecular mechanisms. Chemotherapeutic effects are dependent on multiple molecular pathways, which may provide a new perspective of casticin as a candidate anti-neoplastic drug. This review suggests that additional studies and preclinical trials are required to determine specific intracellular sites of action and derivative targets in order to fully understand the mechanisms of its antitumor activity and validate this compound as a medicinal agent for the prevention and treatment of various cancers.

References

  1. de Sampaio e Spohr TC, Stipursky J, Sasaki AC, et al (2010). Effects of the flavonoid casticin from Brazilian Croton betulaster in cerebral cortical progenitors in vitro: direct and indirect action through astrocytes. J Neurosci Res, 88, 530-41.
  2. Diaz F, Chavez D, Lee D, et al (2003). Cytotoxic flavone analogues of vitexicarpin, a constituent of the leaves of Vitex negundo. J Nat Prod, 66, 865-7. https://doi.org/10.1021/np0300784
  3. Ding C, Khan M, Zheng B, et al (2012). Casticin induces apoptosis and mitotic arrest in pancreatic carcinoma PANC-1 cells. Africal J Phamacy Pharmacology, 6, 412-8.
  4. Elmore S (2007a). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35, 495-516. https://doi.org/10.1080/01926230701320337
  5. Elmore S (2007b). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35, 495-516. https://doi.org/10.1080/01926230701320337
  6. Evan GI, Vousden KH (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411, 342-8. https://doi.org/10.1038/35077213
  7. Feng X, Zhou Q, Liu C, et al (2012). Drug screening study using glioma stem-like cells. Mol Med Rep, 6, 1117-20.
  8. Freitas S, Costa S, Azevedo C, et al (2011). Flavonoids inhibit angiogenic cytokine production by human glioma cells. Phytother Res, 25, 916-21. https://doi.org/10.1002/ptr.3338
  9. Ghosh S, May MJ, Kopp EB (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 16, 225-60. https://doi.org/10.1146/annurev.immunol.16.1.225
  10. Gillet JP, Efferth T, Steinbach D, et al (2004). Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res, 64, 8987-93. https://doi.org/10.1158/0008-5472.CAN-04-1978
  11. Gilmore TD (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25, 6680-4. https://doi.org/10.1038/sj.onc.1209954
  12. Guan R, Wang D, Yu Z, et al (2010). Preparative isolation and purification of the active components from Viticis Fructus by high-speed counter-current chromatography. Se Pu, 28, 1043-7 (in Chinese).
  13. Haidara K, Zamir L, Shi QW, et al (2006). The flavonoid Casticin has multiple mechanisms of tumor cytotoxicity action. Cancer Lett, 242, 180-90. https://doi.org/10.1016/j.canlet.2005.11.017
  14. Han X, Ma X, Zhang T, et al (2007). Isolation of high-purity casticin from Artemisia annua L. by high-speed countercurrent chromatography. J Chromatogr A, 1151, 180-2. https://doi.org/10.1016/j.chroma.2007.02.105
  15. Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  16. Cragg GM, Newman DJ (2005). Plants as a source of anti-cancer agents. J Ethnopharmacol, 100, 72-9. https://doi.org/10.1016/j.jep.2005.05.011
  17. Csupor-Loffler B, Hajdu Z, Zupko I, et al (2009). Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumour cell lines. Phytother Res, 23, 672-6. https://doi.org/10.1002/ptr.2697
  18. He L, Yang X, Cao X, et al (2013). Casticin induces growth suppression and cell cycle arrest through activation of FOXO3a in hepatocellular carcinoma. Oncol Rep, 29, 103-8.
  19. Hengartner MO (2000). The biochemistry of apoptosis. Nature, 407, 770-6. https://doi.org/10.1038/35037710
  20. Aggarwal BB, Prasad S, Reuter S, et al (2011). Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: "reverse pharmacology" and "bedside to bench" approach. Curr Drug Targets, 12, 1595-653. https://doi.org/10.2174/138945011798109464
  21. Antonsson B, Martinou JC (2000). The Bcl-2 protein family. Exp Cell Res, 256, 50-7. https://doi.org/10.1006/excr.2000.4839
  22. Appierto V, Tiberio P, Villani MG, et al (2009). PLAB induction in fenretinide-induced apoptosis of ovarian cancer cells occurs via a ROS-dependent mechanism involving ER stress and JNK activation. Carcinogenesis, 30, 824-31. https://doi.org/10.1093/carcin/bgp067
  23. Bae I, Smith ML, Sheikh MS, et al (1996). An abnormality in the p53 pathway following gamma-irradiation in many wildtype p53 human melanoma lines. Cancer Res, 56, 840-7.
  24. Birt DF, Hendrich S, Wang W (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther, 90, 157-77. https://doi.org/10.1016/S0163-7258(01)00137-1
  25. Bradham CA, Qian T, Streetz K, et al (1998). The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol, 18, 6353-64.
  26. Brasier AR (2006). The NF-kappaB regulatory network. Cardiovasc Toxicol, 6, 111-30. https://doi.org/10.1385/CT:6:2:111
  27. Brunelle JK, Letai A (2009). Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci, 122, 437-41. https://doi.org/10.1242/jcs.031682
  28. Carnero A, Blanco-Aparicio C, Renner O, et al (2008). The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets, 8, 187-98. https://doi.org/10.2174/156800908784293659
  29. Chen CC, Chan WH (2009). Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int J Mol Sci, 10, 3338-57. https://doi.org/10.3390/ijms10083338
  30. Chen D, Cao J, Tian L, et al (2011a). Induction of apoptosis by casticin in cervical cancer cells through reactive oxygen species-mediated mitochondrial signaling pathways. Oncol Rep, 26, 1287-94.
  31. Chen JW, Chen YH, Lin FY, et al (2003). Ginkgo biloba extract inhibits tumor necrosis factor-alpha-induced reactive oxygen species generation, transcription factor activation, and cell adhesion molecule expression in human aortic endothelial cells. Arterioscler Thromb Vasc Biol, 23, 1559-66. https://doi.org/10.1161/01.ATV.0000089012.73180.63
  32. Chen SN, Friesen JB, Webster D, et al (2011b). Phytoconstituents from Vitex agnus-castus fruits. Fitoterapia, 82, 528-33. https://doi.org/10.1016/j.fitote.2010.12.003
  33. Choudhary MI, Jalil S, Nawaz SA, et al (2009). Antiinflammatory and lipoxygenase inhibitory compounds from Vitex agnuscastus. Phytother Res, 23, 1336-9. https://doi.org/10.1002/ptr.2639
  34. Christen P, Cuendet M (2012). Plants as a source of therapeutic and health products. Chimia (Aarau), 66, 320-3. https://doi.org/10.2533/chimia.2012.320
  35. Collins JA, Schandi CA, Young KK, et al (1997). Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem, 45, 923-34. https://doi.org/10.1177/002215549704500702
  36. Cory S, Adams JM (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2, 647-56. https://doi.org/10.1038/nrc883
  37. Hernandez MM, Heraso C, Villarreal ML, et al (1999). Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). J Ethnopharmacol, 67, 37-44. https://doi.org/10.1016/S0378-8741(99)00041-0
  38. Hofseth LJ, Hussain SP, Harris CC (2004). p53: 25 years after its discovery. Trends Pharmacol Sci, 25, 177-81. https://doi.org/10.1016/j.tips.2004.02.009
  39. Hogner C, Sturm S, Seger C, et al (2013). Development and validation of a rapid ultra-high performance liquid chromatography diode array detector method for Vitex agnus-castus. J Chromatogr B Analyt Technol Biomed Life Sci, 927, 181-90. https://doi.org/10.1016/j.jchromb.2013.02.037
  40. Hu Y, Hou TT, Zhang QY, et al (2007a). Evaluation of the estrogenic activity of the constituents in the fruits of Vitex rotundifolia L. for the potential treatment of premenstrual syndrome. J Pharm Pharmacol, 59, 1307-12. https://doi.org/10.1211/jpp.59.9.0016
  41. Hu Y, Xin HL, Zhang QY, et al (2007b). Anti-nociceptive and anti-hyperprolactinemia activities of Fructus Viticis and its effective fractions and chemical constituents. Phytomedicine, 14, 668-74. https://doi.org/10.1016/j.phymed.2007.01.008
  42. Ji HF, Li XJ, Zhang HY (2009). Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep, 10, 194-200. https://doi.org/10.1038/embor.2009.12
  43. Jiang H, Morgan JA (2004). Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng, 85, 130-7. https://doi.org/10.1002/bit.10867
  44. Jiang L, Cao XC, Cao JG, et al (2013). Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a. Oncol Lett, 5, 1605-10.
  45. Kanters E, Pasparakis M, Gijbels MJ, et al (2003). Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest, 112, 1176-85. https://doi.org/10.1172/JCI200318580
  46. Kao ES, Wang CJ, Lin WL, et al (2005). Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. J Agric Food Chem, 53, 430-6. https://doi.org/10.1021/jf040231f
  47. Kennedy SG, Wagner AJ, Conzen SD, et al (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev, 11, 701-13. https://doi.org/10.1101/gad.11.6.701
  48. Kim KK, Lange TS, Singh RK, et al (2010). Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells. BMC Cancer, 10, 72. https://doi.org/10.1186/1471-2407-10-72
  49. Klippel A, Reinhard C, Kavanaugh WM, et al (1996). Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol, 16, 4117-27.
  50. Kobayakawa J, Sato-Nishimori F, Moriyasu M, et al (2004). G2-M arrest and antimitotic activity mediated by casticin, a flavonoid isolated from Viticis Fructus (Vitex rotundifolia Linne fil.). Cancer Lett, 208, 59-64. https://doi.org/10.1016/j.canlet.2004.01.012
  51. Koh DJ, Ahn HS, Chung HS, et al (2011). Inhibitory effects of casticin on migration of eosinophil and expression of chemokines and adhesion molecules in A549 lung epithelial cells via NF-kappaB inactivation. J Ethnopharmacol, 136, 399-405. https://doi.org/10.1016/j.jep.2011.01.014
  52. Kok SH, Cheng SJ, Hong CY, et al (2005). Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett, 217, 43-52. https://doi.org/10.1016/j.canlet.2004.07.045
  53. Kuldo JM, Westra J, Asgeirsdottir SA, et al (2005). Differential effects of NF-{kappa}B and p38 MAPK inhibitors and combinations thereof on TNF-{alpha}- and IL-1{beta}-induced proinflammatory status of endothelial cells in vitro. Am J Physiol Cell Physiol, 289, 1229-39. https://doi.org/10.1152/ajpcell.00620.2004
  54. Kunwar RM, Shrestha KP, Bussmann RW (2010). Traditional herbal medicine in far-west Nepal: a pharmacological appraisal. J Ethnobiol Ethnomed, 6, 35. https://doi.org/10.1186/1746-4269-6-35
  55. Lee SM, Lee YJ, Kim YC, et al (2012). Vascular protective role of vitexicarpin isolated from Vitex rotundifolia in human umbilical vein endothelial cells. Inflammation, 35, 584-93. https://doi.org/10.1007/s10753-011-9349-x
  56. Lee SR, Park JH, Park EK, et al (2005). Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol, 205, 270-7. https://doi.org/10.1002/jcp.20395
  57. Leibowitz B, Yu J (2010). Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther, 9, 417-22. https://doi.org/10.4161/cbt.9.6.11392
  58. Li P, Nijhawan D, Budihardjo I, et al (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-89. https://doi.org/10.1016/S0092-8674(00)80434-1
  59. Li R, Chen B, Wu W, et al (2009). Ginkgolide B suppresses intercellular adhesion molecule-1 expression via blocking nuclear factor-kappaB activation in human vascular endothelial cells stimulated by oxidized low-density lipoprotein. J Pharmacol Sci, 110, 362-9. https://doi.org/10.1254/jphs.08275FP
  60. Li WX, Cui CB, Cai B, et al (2005). Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G2/M phase and induce apoptosis in mammalian cancer cells. J Asian Nat Prod Res, 7, 615-26. https://doi.org/10.1080/10286020310001625085
  61. Liang Y, Zhou Y, Shen P (2004). NF-kappaB and its regulation on the immune system. Cell Mol Immunol, 1, 343-50.
  62. Lin CW, Tu PF, Hsiao NW, et al (2007a). Identification of a novel septin 4 protein binding to human herpesvirus 8 kaposin A protein using a phage display cDNA library. J Virol Methods, 143, 65-72. https://doi.org/10.1016/j.jviromet.2007.02.010
  63. Lin S, Zhang H, Han T, et al (2007b). In vivo effect of casticin on acute inflammation. Zhong Xi Yi Jie He Xue Bao, 5, 573-6. https://doi.org/10.3736/jcim20070520
  64. Ling Y, Zhu J, Fan M, et al (2012). Metabolism studies of casticin in rats using HPLC-ESI-MS (n). Biomed Chromatogr, 26, 1502-8. https://doi.org/10.1002/bmc.2724
  65. Liu E, Kuang Y, He W, et al (2013). Casticin induces human glioma cell death through apoptosis and mitotic arrest. Cell Physiol Biochem, 31, 805-14. https://doi.org/10.1159/000350098
  66. Loges S, Tinnefeld H, Metzner A, et al (2006). Downregulation of VEGF-A, STAT5 and AKT in acute myeloid leukemia blasts of patients treated with SU5416. Leuk Lymphoma, 47, 2601-9. https://doi.org/10.1080/10428190600948253
  67. Mali RG, Dhake AS (2011). A review on herbal antiasthmatics. Orient Pharm Exp Med, 11, 77-90. https://doi.org/10.1007/s13596-011-0019-1
  68. Manosroi A, Saraphanchotiwitthaya A, Manosroi J (2005). In vivo immunomodulating activity of wood extracts from Clausena excavata Burm. f. J Ethnopharmacol, 102, 5-9. https://doi.org/10.1016/j.jep.2005.04.033
  69. Manthey JA, Grohmann K, Guthrie N (2001). Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem, 8, 135-53. https://doi.org/10.2174/0929867013373723
  70. Meng F, Yang J, Yang C, et al (2012). Vitexicarpin induces apoptosis in human prostate carcinoma PC-3 cells through G2/M phase arrest. Asian Pac J Cancer Prev, 13, 6369-74. https://doi.org/10.7314/APJCP.2012.13.12.6369
  71. Mesaik MA, Murad S, Khan KM, et al (2009). Isolation and immunomodulatory properties of a flavonoid, casticin from Vitex agnus-castus. Phytother Res, 23, 1516-20. https://doi.org/10.1002/ptr.2492
  72. Miyahisa I, Funa N, Ohnishi Y, et al (2006). Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl Microbiol Biotechnol, 71, 53-8. https://doi.org/10.1007/s00253-005-0116-5
  73. Mukherjee PK, Venkatesh P, Ponnusankar S (2010). Ethnopharmacology and integrative medicine - Let the history tell the future. J Ayurveda Integr Med, 1, 100-9. https://doi.org/10.4103/0975-9476.65077
  74. Nagoor NH, Shah Jehan Muttiah N, Lim CS, et al (2011). Regulation of apoptotic effects by erythrocarpine E, a cytotoxic limonoid from Chisocheton erythrocarpus in HSC-4 human oral cancer cells. PLoS One, 6, e23661. https://doi.org/10.1371/journal.pone.0023661
  75. Nam NH (2006). Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem, 6, 945-51. https://doi.org/10.2174/138955706777934937
  76. Nunez G, Benedict MA, Hu Y, et al (1998). Caspases: the proteases of the apoptotic pathway. Oncogene, 17, 3237-45.
  77. O'Connor PM, Jackman J, Bae I, et al (1997). Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res, 57, 4285-300.
  78. Ono M, Yanaka T, Yamamoto M, et al (2002). New diterpenes and norditerpenes from the fruits of Vitex rotundifolia. J Nat Prod, 65, 537-41. https://doi.org/10.1021/np0105331
  79. Papa V, Tazzari PL, Chiarini F, et al (2008). Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia, 22, 147-60. https://doi.org/10.1038/sj.leu.2404980
  80. Perkins ND (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 8, 49-62. https://doi.org/10.1038/nrm2083
  81. Pirollo KF, Bouker KB, Chang EH (2000). Does p53 status influence tumor response to anticancer therapies? Anticancer Drugs, 11, 419-32. https://doi.org/10.1097/00001813-200007000-00002
  82. Rasul A, Bao R, Malhi M, et al (2013). Induction of apoptosis by costunolide in bladder cancer cells is mediated through ros generation and mitochondrial dysfunction. Molecules, 18, 1418-33. https://doi.org/10.3390/molecules18021418
  83. Rasul A, Ding C, Li X, et al (2012a). Dracorhodin perchlorate inhibits PI3K/Akt and NF-kappaB activation, up-regulates the expression of p53, and enhances apoptosis. Apoptosis, 17, 1104-19. https://doi.org/10.1007/s10495-012-0742-1
  84. Rasul A, Khan M, Bo Y, et al (2011a). Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells. Asian Pac J Cancer Prev, 12, 1219-23.
  85. Rasul A, Song R, Wei W, et al (2012b). Tubeimoside-1 inhibits growth via the induction of cell cycle arrest and apoptosis in human melanoma A375 cells. Bangladesh J Pharmacol, 7, 150-6.
  86. Rasul A, Yu B, Khan M, et al (2012c). Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol, 40, 1153-61.
  87. Rasul A, Yu B, Yang LF, et al (2011b). Induction of mitochondriamediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and Nor-kurarinone isolated from Sophora flavescens. Asian Pac J Cancer Prev, 12, 2499-504.
  88. Rasul A, Yu B, Zhong L, et al (2012d). Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol Rep, 27, 1481-7.
  89. Reed JC, Jurgensmeier JM, Matsuyama S (1998). Bcl-2 family proteins and mitochondria. Biochim Biophys Acta, 1366, 127-37. https://doi.org/10.1016/S0005-2728(98)00108-X
  90. Remberg P, Bjork L, Hedner T, et al (2004). Characteristics, clinical effect profile and tolerability of a nasal spray preparation of Artemisia abrotanum L. for allergic rhinitis. Phytomedicine, 11, 36-42. https://doi.org/10.1078/0944-7113-00350
  91. Reuter S, Eifes S, Dicato M, et al (2008). Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol, 76, 1340-51. https://doi.org/10.1016/j.bcp.2008.07.031
  92. Righeschi C, Eichhorn T, Karioti A, et al (2012). Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin. Cancer Genomics Proteomics, 9, 143-51.
  93. Shen JK, Du HP, Yang M, et al (2009). Casticin induces leukemic cell death through apoptosis and mitotic catastrophe. Ann Hematol, 88, 743-52. https://doi.org/10.1007/s00277-008-0677-3
  94. Shi Y, Bao YL, Wu Y, et al (2011). Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway. J Biomol Screen, 16, 525-35. https://doi.org/10.1177/1087057111398486
  95. Siasos G, Tsigkou V, Tousoulis D, et al (2013). Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr Med Chem, 20, 2641-60. https://doi.org/10.2174/0929867311320210003
  96. Song YC, Zhang X, Lei GY, et al (2010). [Vitexicarpin affects proliferation and apoptosis in mutated p53 breast cancer cell]. Zhonghua Yi Xue Za Zhi, 90, 703-7.
  97. Tan HK, Moad AI, Tan ML (2014). The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev, 15, 6463-75. https://doi.org/10.7314/APJCP.2014.15.16.6463
  98. Tang SY, Zhong MZ, Yuan GJ, et al (2013). Casticin, a flavonoid, potentiates TRAIL-induced apoptosis through modulation of anti-apoptotic proteins and death receptor 5 in colon cancer cells. Oncol Rep, 29, 474-80.
  99. Thornberry NA, Lazebnik Y (1998). Caspases: enemies within. Science, 281, 1312-6. https://doi.org/10.1126/science.281.5381.1312
  100. Touil YS, Fellous A, Scherman D, et al (2009). Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization. Nutr Cancer, 61, 310-21. https://doi.org/10.1080/01635580802521346
  101. Velpandian T, Gupta P, Ravi AK, et al (2013). Evaluation of pharmacological activities and assessment of intraocular penetration of an ayurvedic polyherbal eye drop (Itone) in experimental models. BMC Complement Altern Med, 13, 1. https://doi.org/10.1186/1472-6882-13-1
  102. Wang X, Liang Y, Zhu L, et al (2010). Preparative isolation and purification of flavone C-Glycosides from the leaves of Ficus microcarpa L. f by Medium-pressure liquid chromatography, high-speed countercurrent chromatography, and preparative liquid chromatography. J Liq Chromatogr Relat Technol, 33, 462-80. https://doi.org/10.1080/10826070903574352
  103. Webster DE, He Y, Chen SN, et al (2011). Opioidergic mechanisms underlying the actions of Vitex agnus-castus L. Biochem Pharmacol, 81, 170-7. https://doi.org/10.1016/j.bcp.2010.09.013
  104. Wei X, Guo W, Wu S, et al (2010). Oxidative stress in NSC-741909-induced apoptosis of cancer cells. J Transl Med, 8, 37. https://doi.org/10.1186/1479-5876-8-37
  105. Wong CK, Zhang JP, Ip WK, et al (2002). Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils. Clin Exp Immunol, 128, 483-9. https://doi.org/10.1046/j.1365-2249.2002.01880.x
  106. Woo JH, Kim YH, Choi YJ, et al (2003). Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, downregulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24, 1199-208. https://doi.org/10.1093/carcin/bgg082
  107. Xia JF, Gao JJ, Inagaki Y, et al (2013). Flavonoids as potential anti-hepatocellular carcinoma agents: Recent approaches using HepG2 cell line. Drug Discov Ther, 7, 1-8.
  108. Xia Z, Dickens M, Raingeaud J, et al (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326-31. https://doi.org/10.1126/science.270.5240.1326
  109. Xie H, Liang Y, Ito Y, et al (2011). Preparative isolation and purification of four flavonoids from Daphne genkwa sieb. et zucc. by high-speed countercurrent chromatography. J Liq Chromatogr Relat Technol, 34, 2360-72. https://doi.org/10.1080/10826076.2011.589094
  110. Yang J, Yang Y, Tian L, et al (2011). Casticin-induced apoptosis involves death receptor 5 upregulation in hepatocellular carcinoma cells. World J Gastroenterol, 17, 4298-307. https://doi.org/10.3748/wjg.v17.i38.4298
  111. Yang JC, Cortopassi GA (1998a). dATP causes specific release of cytochrome C from mitochondria. Biochem Biophys Res Commun, 250, 454-7. https://doi.org/10.1006/bbrc.1998.9333
  112. Yang JC, Cortopassi GA (1998b). Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med, 24, 624-31. https://doi.org/10.1016/S0891-5849(97)00367-5
  113. Yang XH, Zheng X, Cao JG, et al (2010). 8-Bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNK. World J Gastroenterol, 16, 3385-93. https://doi.org/10.3748/wjg.v16.i27.3385
  114. Ye Q, Zhang QY, Zheng CJ, et al (2010). Casticin, a flavonoid isolated from Vitex rotundifolia, inhibits prolactin release in vivo and in vitro. Acta Pharmacol Sin, 31, 1564-8. https://doi.org/10.1038/aps.2010.178
  115. You KM, Son KH, Chang HW, et al (1998). Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Med, 64, 546-50. https://doi.org/10.1055/s-2006-957511
  116. Zeng F, Tian L, Liu F, et al (2012). Induction of apoptosis by casticin in cervical cancer cells: reactive oxygen species-dependent sustained activation of Jun N-terminal kinase. Acta Biochim Biophys Sin (Shanghai), 44, 442-9. https://doi.org/10.1093/abbs/gms013
  117. Zerfaoui M, Suzuki Y, Naura AS, et al (2008). Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal, 20, 186-94. https://doi.org/10.1016/j.cellsig.2007.10.007
  118. Zhou Y, Peng Y, Mao QQ, et al (2013a). Casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells. Asian Pac J Trop Med, 6, 372-8. https://doi.org/10.1016/S1995-7645(13)60041-3
  119. Zhou Y, Tian L, Long L, et al (2013b). Casticin potentiates TRAIL-induced apoptosis of gastric cancer cells through endoplasmic reticulum stress. PLoS One, 8, 58855. https://doi.org/10.1371/journal.pone.0058855
  120. Zhu XX, Yang L, Li YJ, et al (2013). Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis. Pharmacol Rep, 65, 410-20. https://doi.org/10.1016/S1734-1140(13)71016-8

Cited by

  1. Casticin inhibits the activity of transcription factor Sp1 and the methylation of RECK in MGC803 gastric cancer cells vol.13, pp.2, 2016, https://doi.org/10.3892/etm.2016.4003
  2. : A Plant with Versatile Pharmacological and Biological Activities vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/4269868
  3. Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells vol.22, pp.2, 2017, https://doi.org/10.3390/molecules22020240
  4. Targeting cancer cell mitochondria as a therapeutic approach: recent updates vol.9, pp.9, 2017, https://doi.org/10.4155/fmc-2017-0011
  5. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways pp.1432-1912, 2018, https://doi.org/10.1007/s00210-018-1574-5
  6. Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway vol.38, pp.6, 2018, https://doi.org/10.1042/BSR20180738
  7. L. shoot cultures by precursor feeding strategy vol.18, pp.5, 2018, https://doi.org/10.1002/elsc.201800003
  8. Casticin alleviates lipopolysaccharide-induced inflammatory responses and expression of mucus and extracellular matrix in human airway epithelial cells through Nrf2/Keap1 and NF-κB pathways vol.32, pp.7, 2018, https://doi.org/10.1002/ptr.6067
  9. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications pp.1477-2213, 2018, https://doi.org/10.1080/10286020.2018.1492565
  10. Protective Effects of Casticin From Vitex trifolia Alleviate Eosinophilic Airway Inflammation and Oxidative Stress in a Murine Asthma Model vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00635
  11. Casticin-Induced Inhibition of Cell Growth and Survival Are Mediated through the Dual Modulation of Akt/mTOR Signaling Cascade vol.11, pp.2, 2019, https://doi.org/10.3390/cancers11020254