
Radixin Knockdown by RNA Interference Suppresses Human Glioblastoma Cell Growth in Vitro and in Vivo

Jun-Jie Qin¹, Jun-Mei Wang¹, Jiang Du¹, Chun Zeng², Wu Han², Zhi-Dong Li², Jian Xie²*, Gui-Lin Li¹*

Abstract

Radixin, a member of the ERM (ezrin–radixin–moesin) family, plays important roles in cell motility, invasion and tumor progression. It is expressed in a variety of normal and neoplastic cells, including many types of epithelial and lymphoid examples. However, its function in glioblastomas remains elusive. Thus, in this study, radixin gene expression was first examined in the glioblastoma cells, then suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method. We found that there were high levels of radixin expression in glioblastoma U251 cells. Radixin shRNA caused down-regulation of radixin gene expression and when radixin-silenced cells were implanted into nude mice, tumor growth was significantly inhibited as compared to blank control cells or nonsense shRNA cells. In addition, microvessel density in the tumors was significantly reduced. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin-suppressed glioblastoma U251 cells. In contrast, MMP9 was down-regulated. Taken together, our findings suggest that radixin is involved in GBM cell migration and invasion, and implicate TSP-1, E-cadherin and MMP9 as metastasis-inducing factors.

Keywords: Malignant glioblastoma multiform - small interference RNA - radixin - thrombospondin-1

Asian J Cancer Prev, 15 (22), 9805-9812

Introduction

Glioblastoma (GBM) is a WHO grade IV tumor arising from the astrocytes and represents the most common type of primary central nervous system (CNS) malignancies providing for well over one half of all gliomas (Hoffman et al., 2006; Schneider et al., 2010). Current treatment methods include surgical resection, radio-surgical, external irradiation, chemotherapy (Cheng et al., 2005; Stupp et al., 2006; Wen et al., 2006), and biological therapy (Kjaergaard et al., 2005). Despite recent advances in diagnostics and treatments, prognosis for patients with this disease remains poor (Ng et al., 2007). One of the important reasons is that active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death (Xia et al., 2009). Although our understanding of GBM carcinogenesis has steadily improved, the factors that mediate GBM invasion are still poorly understood. Various studies investigate the genes and gene products involved in GBM cell migration and invasion, like matrix metalloproteinase genes, growth factors, cytokines, integrins, and cadherins (Nakada et al., 2007).

Radixin, encoded by chromosome 11 (11 exons), is a member of the ERM (ezrin–radixin–moesin) family. It functions as a membrane-cytoskeletal crosslinker in actin-rich cell surface structures and is thereby thought to be essential for cortical cytoskeleton organization, cell motility, adhesion, and proliferation (Hoeflich and Ikura, 2004). ERM proteins display a similar structural organization. They share extensive homology in their amino-terminal domain, which is called the four-point one, ezrin, radixin, moesin (FERM) domain (Gautreau et al., 2002). Spanning these globular domains is the α-helix-rich domain, termed the α-domain. Recent biophysical studies indicate that the radixin α-domain is an extremely long linear monomer with an enhanced number of electrostatic salt bridge interactions predicted to contribute synergistically to its thermal stability (Hoeflich et al., 2003). Activated radixin has been shown to join actin filaments to CD43, CD44, and ICAM1-3 cell adhesion molecules and various membrane channels and receptors, such as the Na+/H+ exchanger-3 (NHE3), cystic fibrosis transmembrane conductance regulator (CFTR), and the β2-adrenergic receptor (Tsukita and Yonemura, 1999; Bretscher et al., 2002).

Radixin is expressed in a variety of normal and neoplastic cells, including many epithelial and lymphoid cell types (Ramoni et al., 2002; Suda et al., 2011). In pancreatic carcinomas, high radixin expression levels
are associated with high metastatic, cell proliferation, survival, adhesion, and invasive potential (Chen et al., 2012). Ezrin was expressed in astrocytes in the central nervous system (CNS). Increased ezrin expression is associated with enhanced cell growth and poor malignant tumor prognosis, including gliomas (Geiger et al., 2000; Khanna et al., 2004; Tynninen et al., 2004). The observed effects of ezrin overexpression and silencing on the cell malignant transformation indicate a role for ezrin in regulating tumor metastasis and progression (Curto and McClatchey, 2004). However, the mechanisms of radixin-mediated tumor development still require further elucidation. In this study, we investigated radixin’s effect on the growth and invasion ability of the glioblastoma cell line U251.

Experimental procedures

Cells and antibodies

The glioblastoma cell line U251 and normal astrocyte glial cells were purchased from the Saier Biotechnology (Tianjin, China), cultured in DMEM (GIBCO, Grand Island, NY) supplemented with 10% fetal calf serum (FCS) and 1% L-glutamine (Invitrogen, Karlsruhe, Germany), and maintained at 37°C in 5% CO2. Rabbit polyclonal anti-radixin antibody was purchased from Upstate technology (CST, U.S.A). Mouse monoclonal anti-E-Cadherin, anti-TSP-1 antibodies, and anti-MMP9 antibodies were purchased from Cell Signaling Technology (Beverly, MA). The mouse monoclonal antibody to GAPDH was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The secondary antibodies were purchased from Saier Biotechnology (Tianjin, China).

RNA interference

A radixin (GeneBank, No. L02320) shRNA sequence was inserted into the pSIL-GFP lentivirus RNAi expression system. The shRNA-containing vectors were transfected together into 293T cells with pHelper1.0 and the lentiviral helper plasmid pHelper 2.0 to generate the respective lentiviruses. Viral stocks were collected from the transduced 293T cells and were used to infect U251 cells. The radixin nonsense shRNA sequence was ACTACCGTTGTTATAGGTG, and the radixin shRNA sequence was GACGACAAGTTAACACCTAAA. The mRNA and protein levels were measured 72 h after cells were infected.

Quantitative RT-PCR

Total cellular RNA was extracted with M-MLV-RTase (Promega, Madison, WI) according to the manufacturer’s protocols. The resulting cDNA was used for PCR using the SYBR-Green Master PCR Mix (Applied Biosystem, Carlsbad, CA) in triplicates. Primers for qRT-PCR were as follows: radixin forward primer: CGAGGA AGAACGTGTAACCGAA; radixin reverse primer: TCTTTGTTTCACTCTTGCGT; E-Cadherin (GeneBank, No. Z13009) forward primer: CGGAAT GCAGTTGAGGATC; E-Cadherin reverse primer: AGGATGGTGTAAGCGATGGC; GAPDH forward primer: TGGGAGGCTTTGAGAAAAC; TSP-1 reverse primer: CACTGTATGCAAGCAGCAAGAGA; MMP-9 (GeneBank, NM_004994.2) forward primer: TCAGGGAGACGCCCAT TTT; and MMP-9 reverse primer: TGGCAAGGTTCCTCACCAG. PCR and data collection were performed on the PCR System (Takara, Shiga, Japan). All quantitation was normalized to an endogenous GAPDH control. GAPDH forward primer: ACGGATTTGGTCTGATTG; GAPDH reverse primer: GGAAAGTGTTGAGGGATT. The relative quantitation value for each target gene compared to the calibrator for that target is expressed as 2-ΔΔCt, ΔΔCt = (Ct1-Ct2)-(Ct3-Ct4) (Ct is the mean threshold cycle differences after normalizing to GAPDH).

Western blotting

Western blotting was performed as previously described (Guo et al., 2009). For blotting, cell lysates (30 μg protein) were separated by SDS-polyacrylamide gel electrophoresis (PAGE) using NuPAGE 4%-12% Bis-Tris gels, SDS running buffer, and NuPAGE antioxidant (Invitrogen). Proteins were transferred to polyvinylidene fluoride membrane (Invitrogen) using NuPAGE transfer buffer supplemented with NuPAGE antioxidant in 30% methanol. Standard proteins used were Magic-Mark™ XP Western protein standard (Invitrogen) for molecular weight estimations. The membrane was blocked for 1 h in room temperature in blocking solution (5% bovine serum albumin in TBS containing 0.05% Tween) and subsequently incubated with primary antibodies, Rabbit polyclonal anti-radixin (CST, U.S.A), and antibodies against E-Cadherin, TSP-1, MMP9, and GAPDH in blocking solution overnight at 4°C. The membrane was rinsed thoroughly in TBS containing 0.05% Tween and incubated for 1 h in room temperature with horseradish peroxidase conjugated secondary antibodies in blocking solution. After subsequent rinsing, immunoreactive bands were detected using Super Signal West PICO Chemiluminescent Substrate (Thermo Fisher Scientific, Waltham, MA, USA) and an LAS3000 CCD camera (Fujifilm, Tokyo, Japan).

Immunocytochemical analysis

Cell pieces were dyed according to the manufacturer’s protocols. The pieces were fixed in 4% paraformaldehyde 30 min in a 4°C refrigerator. Antibodies were then added, colored after being re-dyed by hematoxylin, and dehydrated by descending alcohol concentrations. The pieces were observed and documented with an Axio Imager A1 (Zeiss, Oberkochen, Germany).

Immunohistochemical analysis

Immunohistochemical assay was performed as previously described (Persson et al., 2010). The sections were de-waxed in xylene, dehydrated through graded alcohol concentration, and washed in tris buffer (pH 7.2). For antigen retrieval, the sections were immersed in citrate buffer (pH 6.2) at 90°C for 1 h using a water bath and then incubated with 3% hydrogen peroxide in methanol for 15 min to block endogenous peroxidase activity. After washing twice in tris buffer, sections were incubated 3-4 h at room temperature separately with
polyclonal antibody. Following washing in tris buffer, the sections were sequentially incubated with biotinylated link secondary antibody for 30 min in each. The sections were washed twice again in tris buffer and incubated with the chromogen diaminobenzidine-tetrahydrochloride substrate, followed by counterstaining in hematoxylin.

The sections were mounted in DPX mountant. Parallel control slides were run with all batches, including positive and negative controls.

MTT assay

MTT assay was performed as previously described (Chen et al., 2010). Viable cells (2×10^5 cells/ml) were plated into 96-well plates (100 μl complete medium/well) and cultured at 37°C in 5% CO₂. At different time points, MTT reagent (5 mg/ml) (DingGuo Biotech, Beijing, China) was added (20 μl per well) and incubated at 37°C for 4h. The reaction was stopped with 100 μl DMSO and the optical density was determined at OD570 nm on a multi-well plate reader.

Cell Cycle Assay

Cell cycle analysis was performed by flow cytometry as described previously (Meng et al., 2010). 5×10^5 cells were plated in 60 mm dishes and cultured for 2 days. Cells were collected by trypsinization, fixed with 95% ethanol, washed with PBS, resuspended in 1 ml of 0.01M PBS with RNase and 50 μg/mL propidium iodide, incubated for 20 min in the dark at room temperature, and analyzed by flow cytometry using a FACS Calibur (Becton Dickinson, Bedford, MA).

Apoptotic cell detection

Cells were stained with fluorescein isothiocyanate (FITC) labeled annexin-V and propidium iodide (PI) stain simultaneously to discriminate intact cells (annexin-/PI-) from apoptotic cells (annexin+/PI-) and necrotic cells (annexin+/PI+). A total of 2.0×10^5 cells were washed twice with ice-cold PBS and incubated for 30 min in a binding buffer (1 μg/ml PI and 1 μg/ml FITC labeled annexin-V), respectively. FACS analysis for annexin-V and PI staining was performed by flow cytometer.

Adhesion assay

96-well plates were coated 1 h at 37 °C with 20 μg/ml of fibronectin (FN) and blocked with 0.5% BSA for 1 h at room temperature. Then, 4×10^5 /ml cells were seeded in each well and incubated at 37°C for 30 min in 5% CO₂. After incubation, unbound cells were removed along with the culture medium. Remaining adherent cells were colored for 15 min with 0.5% violet crystal and fixed with 20% methanol. After washing with PBS, adherent cells were lysed with 1% SDS. Adhesion was quantified with spectrophotometric optic density measurement at 550 nm.

Invasion assay

Invasion assay was performed as previously described (Albini et al., 1987). In short, cells were harvested and washed with serum-free medium. 1×10^5 cell suspension was then added into the matrigel transwells, with 200 μl of culture medium containing 10ng/ml ECM as the chemoattractant in the lower chamber. Cells that invaded through the matrigel membrane were stained and counted after 24h incubation at 37°C.

Tumor growth in nude mice

Female BALB/c nude mice (obtained from Beijing HuaFuKang Biotechnology Co., LTD, Beijing; body weight, 15 to 17g) were bred under specified pathogen-free conditions (26°C, 70% relative humidity, and a 12h light/12h dark cycle) in a germ-free environment with free access to food and water. The logarithmically growing cells were trypsinized and resuspended in D-Hanks solution. 2×10^6 cells in 0.1 ml were injected subcutaneously into the mice’s left flanks. Experimental and control groups had at least 10 mice each. Tumors were measured twice weekly with microcalipers, and the tumor volume was calculated according to the formula: V (volume)=LW2×π/6, where “L” represents the greatest length and “W” represents the perpendicular width (Butler et al., 1986). The animals were sacrificed by cervical dislocation under light ether anesthesia after 4 weeks. The tumors were excised and weighed. Part tumor specimens were fixed in 4% formaldehyde, embedded in paraffin, and cut in 4 μm sections for immunohistochemical analysis (IHC). Parts were kept at -80 °C refrigeration and used for Quantitative RT-PCR (qRT-PCR) and Western blot detection (WB). All procedures met national guidelines for care and use of laboratory animals and were approved by the Institutional Animal Care and Use Committee of Capital Medical University, Beijing, China.

Quantification of tumor microvessel density and in situ TUNEL assay for apoptotic cells

Tumor microvessel densities (MVD) were quantified by anti-CD31 immunohistochemistry as previously described (Singh et al., 2010). Apoptotic cells in tumor samples were identified by terminal deoxyribonucleotidyl transferase dUTP nick end fluorescent labeling (TUNEL) assay according to the manufacturer’s instructions (In situ Cell Death Detection Kit, Roche, Indianapolis, IN). The number of apoptotic cells was evaluated by counting the positive (brown-stained) cells in 10 random fields (×200).

Statistical analysis

Each experiment was performed three to four times. All data were expressed as mean±SD. Statistical analysis was performed with SPSS 13.0 software (SPSS Inc., Chicago, IL). Comparisons between groups were conducted using one-way analysis of variance (ANOVA) or Student’s t test. P values<0.05 were considered statistically significant.

Results

Radixin mRNA and protein expression in glioblastoma U251 cells

To investigate radixin expression, we compared the glioblastoma U251 with normal glial cells by IHC, WB, and qRT-PCR, as shown in Figure 1. There are radixin expressions in normal glial cells at both the mRNA and protein levels and higher radixin expression levels in glioblastoma cells compared to normal glial cells.
Reduction of radixin mRNA and protein expression by shRNA in vitro

To investigate radixin’s biological role in U251 cells, we knocked down radixin transcript by employing shRNA technology. ShRNA to radixin was constructed into pSIL-GFP vector using a lentivirus transduction system, radixin mRNA and protein expression by shRNA in vitro also reduced, as shown in Figure 2.

Radixin down-regulation inhibited glioblastoma U251 cell proliferation

Using radixin cell down-regulation, we first tested U251 cell growth changes using the MTT assay. Results showed a significant cell growth decrease and indicated that cell proliferation was inhibited after transduction with radixin shRNA (Figure 3A). The flow cytometry assay showed that the proportion of cells in the G1 phase was significantly increased and those in the G2 and S phases were decreased after transduction with radixin shRNA (Figure 3B). These results indicated that radixin could enhance the U251 cell growth ability in vitro.

Radixin down-regulation promoted glioblastoma U251 cell apoptosis

To determine the effects of radixin’s down-regulation on the radixin-induced apoptosis in U251 cells, the apoptosis rate was evaluated by flow cytometry analysis. As shown in Figure 3D, the radixin-induced apoptosis effects were investigated in cells treated with radixin shRNA as well as cells in blank controls and cells treated with nonsense shRNA. We found a significantly elevated apoptosis percentage in cells transfected with radixin shRNA compared to blank control cells ($p=0.045$), while there was no significant difference between blank controls and cells transfected with nonsense shRNA ($p>0.05$).
Radixin down-regulation inhibited the adhesion and invasion of glioblastoma U251 cells

In the cell adhesion in vitro experiment, the number of adherent living cells was significantly lower in the radixin shRNA group (Lenti-radixin) than in the nonsense shRNA group (Control) and blank control group (Mock) (Figure 3C). These results suggest that radixin shRNA induces the loss of cell adhesion to the matrix. Since two critical steps are involved in metastasis, adhesion and invasion, we next examined whether radixin can affect U251 cell invasion activity by the matrigel invasion assay. Cell invasive activity was also dramatically decreased in the Lenti-radixin cells compared with the Mock or Control cells. The average cell number invading to the lower chamber for 24h was 54.33±7.51/HPF in the radixin shRNA cells, compared to 126.33±8.62/HPF in the Mock cells or 111.33±10.69/HPF in the Control cells. The quantitative analysis showed that the number of radixin shRNA cells invading to the lower chamber was decreased by 57.01% compared to the Mock cells (p<0.05), while there was no significant difference between Mock and Control cells (p>0.05) (Figure 3E, 3F).

Radixin down-regulation resulted in reduced tumor growth and angiogenesis

To specifically determine radixin’s role in tumor development, Lenti-Radixin, Control, or Mock cells were injected into the left flank regions of nude mice (n=10/group). All of the mice developed tumors. Four weeks after tumor injection, tumor volumes were measured. Subcutaneous tumors formed from Lenti-Radixin cells were significantly smaller compared with the Mock or Control cells (Mock, 116.36±19.25 mm^3; Mock, 155.85±50.25 mm^3; Lenti-Radixin, 56.18 ± 6.40 mm^3) (Figure 4A, 4B). Additionally, Lenti-Radixin tumors had significantly increased numbers of TUNEL-positive cells (p<0.05) (Figure 4C, 4D).

One possible mechanism for decreased tumor growth is attenuated neovascularization. To determine whether radixin down-regulation could potentially disrupt the neovascularization, we examined vascularity in tumors. Staining on Lenti-Radixin tumor sections showed a 4.7-fold decrease in the number of blood vessels compared with Mock or Control tumors (Figure 4E, 4F).

Reduction of radixin mRNA and protein expression by shRNA in vivo

Lenti-Radixin tumors had significantly decreased Radixin expression compared to Mock or Control tumors (p<0.05) (Figure 5). Similar results were found in vitro.

Thrombospondin-1 (TSP-1), MMP9, and E-Cadherin were regulated in Lenti-radixin U251 cells

To determine the mechanism(s) by which radixin regulates tumor growth and progression, we examined...
potential radixin-regulated molecules. As we know, E-cadherin plays a central role in heterotypic epithelial cell-cell adhesion and maintaining epithelial cell colony integrity (Takeichi, 1993). TSP-1 is a potent inhibitor of neovascularization that limits tumor growth (Castle et al., 1997). MMP9 is an important protease of the matrix metalloproteinase (MMPs) family in glioblastoma biology, which can degrade the extracellular matrix (ECM). MMP9 is up-regulated in glioma cell lines and human specimens (Uhm et al., 1997; Forsyth et al., 1998; Forsyth et al., 1999). MMPs are overexpressed not only by glioma cell lines but also by the tumor vasculature, suggesting a relevant role in angiogenesis induction and regulation (Liotta et al., 1991; Hanahan and Folkman, 1996). In this study, Western blot analysis and quantitative RT-PCR revealed that TSP-1 and E-Cadherin were dramatically up-regulated but MMP9 was dramatically down-regulated in cells transfected with radixin shRNA (Figure 6). Those results suggest that TSP-1 and E-Cadherin expression down-regulation and MMP9 expression up-regulation might participate in radixin-mediated tumor growth and progression.

Discussion

Radixin is a member of the ERM (ezrin-radixin-moesin) family and shares the common membrane-binding N-terminal FERM domain with band-4.1 family members (Turunen et al., 1994). By organizing membrane-cytoskeleton-associated complexes and creating specialized membrane domains, the ERM proteins regulate cellular activities like survival, adhesion, and migration/invasion, all of which are important during tumor development and progression (Bretscher et al., 2002; McClatchey, 2003; Chen et al., 2012). Mice lacking radixin are characterized by hepatocyte apical microvilli breakdown, which ultimately results in mild liver injury similar to human conjugated hyperbilirubinemia in Dubin-Johnson syndrome (Kikuchi et al., 2002). High ERM expression levels were observed in many tumor cell lines, such as the breast carcinoma and osteosarcoma cell line (Khanha et al., 2004; Revillion et al., 2008). However, its role and mechanisms remain elusive.

Our results showed that radixin was expressed in astrocytes in the central nervous system (CNS), radixin expression is higher in glioblastoma U251 cells compared with normal astrocytes cells, and knocking down radixin resulted in an inhibition of cell proliferation and survival. Additionally, we observed decreased Lenti-radixin U251 cell adhesion and invasion. We established experimental mice models and showed that radixin knock-down regulated primary tumor growth, angiogenesis, and progression. Hence, our study’s results suggest an important correlation between radixin expression and glioblastoma cancer growth and invasion. So, increased radixin expression is associated with enhanced cell growth and poor malignant GBM prognosis.

Increased cell proliferation and decreased cell death play a pivotal role in tumor progression. Any decreased tumor growth of radixin-suppressed cells may be due to their decreased response to cell proliferation, adhesion, survival, or invasion. The present in vitro data reveals that suppressing radixin results in a significant decrease in proliferation. Another important finding of this study was the enhanced apoptosis of radixin-suppressed cells. An apoptotic property of these cells was observed both in vitro and in tumor tissues. Our results are consistent with previous finding in hippocampal pyramidal cells (Paglini et al., 1998). The observed effects of radixin silencing on the GBM cell transformation indicate a role for radixin in regulating tumor metastasis and progression. Our results are consistent with previous finding in Ezrin (Curto and McClatchey, 2004).

Cell invasion into the surrounding tissue is a multistep action that requires cell-cell contact, cell motility, and extracellular matrix (ECM) degradation by matrix metalloproteinases (MMPs). Malignant tumor cells display varying degrees of resistance to detachment, generating cell-extracellular matrix interactions related to the adhesion complex. This property contributes to tumorigenesis and metastasis (Frisch and Francis, 1994; Chen et al., 2012). Our in vitro study showed significant differences in adhesion and invasion between radixin shRNA and control cells. Radixin is a cytoskeletal protein that might affect the cytoskeletal element assembly at the cytoplasmic face of the membrane and the nuclear skeleton, which would facilitate cell invasion. These results agree with another report where ERM stable knockdown by shRNA reduced in vitro human SGC-7901 cell migration and invasion (Ou-Yang et al., 2011). Angiogenesis is another essential step for tumor growth and metastasis. Our immunohistochemistry results support that primary tumor vasculature contributed to in vivo differences between Lenti-radixin and nonsense shRNA control tumors.
E-cadherin was first discovered in 1995 by Berx (Berx et al., 1995). It is a calcium-dependent cell-cell adhesion molecule with pivotal roles in epithelial cell behavior, tissue development, and cancer growth suppression (Stemmler, 2008; van Roy and Berx, 2008; Sun et al., 2013). TSP-1 is a potent neovascularization inhibitor that limits tumor growth (Castle et al., 1997) and stimulates apoptosis and growth inhibition in neovascular endothelial cell (Jimenez et al., 2000; Lawler et al., 2001). TSP-1 is also reported to inhibit invasion (Moon et al., 2005). Our results showed that E-cadherin and TSP-1 expression levels were markedly increased in the Lenti-radixin cells. Therefore, radixin high expression can down-regulation TSP-1 and E-Cadherin expression, and down-regulation of E-Cadherin lost the ability of cell-cell adhesion, improved the cell mobility, may induced glioblastoma cell growth and invasion. Down-regulation of TSP-1 also weakened the ability of inhibition tumor invasion.

Matrix metalloproteinase (MMPs) constitute some of the most important proteases in glioblastoma biology. In fact, the ability of glioblastoma to infiltrate the surrounding brain parenchyma and induce neo-angiogenesis strictly depends on proteases. Such proteases are capable of degrading the extracellular matrix (ECM) and the basal membranes, thus opening migratory pathways for endothelial and tumor cells. Additionally, proteases can alter cell adhesion properties interfering with cell surface receptor activities, like integrins or cadherins, which usually modulate cell motility. Degrading the ECM, proteases can release growth factors and other molecule involved in tumor angiogenesis, growth, and invasion. Various types of MMPs, such as MMP9, have been shown to be up-regulated in glioma cell lines and human specimens (Uhm et al., 1997; Forsyth et al., 1998; Forsyth et al., 1999). MMPs are overexpressed not only by glioma cell lines but also by the tumor vasculature, suggesting a relevant role in angiogenesis induction and regulation (Liotta et al., 1991; Hanahan and Folkman, 1996). MMP9 are overexpressed also in many other tumors, such as in osteosarcomas (Jin et al., 2013), breast cancer (Darakshshan et al., 2013), cholangiocarcinoma (Kidoikhammouan et al., 2013), human fibrosarcoma cell (Yahayo et al., 2013), which all are overexpressed, suggesting a relevant role in tumor angiogenesis, growth, and invasion. Our results showed that MMP9 expressions were markedly decreased in Lenti-radixin cells in vitro. Therefore, high expression of radixin induced up-regulation of MMP9 expression, enhanced the capable of MMP9 in degrading the extracellular matrix (ECM) and the basal membranes, alter cell adhesion properties to cell-cell adhesion, promoted and accelerated the growth and invasion of glioblastoma cells.

Glioblastoma multiform (GBM or grade IV astrocytoma), or simply glioblastoma, represents the most aggressive and malignant entity. These clinic-pathological features reflect the biology of GBMs, which is characterized by high proliferation rate, low apoptosis, marked invasiveness, and hyper-vascularization. Single biological agents have failed to change significantly the prognosis of glioblastoma patients. The explanation for these still poor results probably lies in the highly aberrant glioblastoma environment. The molecular and genetic alterations, which are a sustaining scenario, have only been partly clarified, also because the definition of ‘multiform’ reflects the macroscopic appearance of the neoplasm as well as its molecular heterogeneity. Our results reflected almost all of the biology of GBMs, and showed the important role of radixin in GBM, introduced knockdown of radixin can suppress the proliferation and invasion of GBM. So knockdown of radixin may be one of the important and useful methods to treat GBM.

In conclusion, we detected high expression of radixin in the glioblastoma cells first, and successfully suppressed the radixin protein and mRNA expression in glioblastoma U251 cells. We found that changes in the radixin protein and mRNA levels were correlated with changes in the proliferation, apoptosis, adhesion, and invasion. Based on these results, we propose that radixin might play a critical role in glioblastoma progression. Down-regulating TSP-1 and E-Cadherin expressions and up-regulating MMP9 expression may be involved in this role. These results indicate that blocking radixin function may represent a novel and effective strategy for preventing glioblastoma progression.

The study’s limitations include the possibility of off-target shRNA effects, differential radixin expression between normal glial cells versus GBM cells should be analyzed in multiple lines. Ideally, this should be done in primary patient samples too. These issues should be addressed in the future.

Acknowledgements

This work was supported by grants from the “Capital Health Project” (Z131100006813011), the “basic-clinical scientific research cooperation foundation of the capital medical university” (13JL04), “National Key Technology Research and Development Program of the Ministry of Science and Technology of China” (2013BAI09B03), and “Beijing Institute for Brain Disorders” (BIBD- PXM2013_014226_07_000084).

References

Jun-Jie Qin et al

