Role of vascular smooth muscle cell in the inflammation of atherosclerosis

DOI QR코드

DOI QR Code

Lim, Soyeon;Park, Sungha

  • 투고 : 2013.12.16
  • 발행 : 2014.01.31

초록

Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

키워드

Atherosclerosis;Membrane receptor;Smooth muscle cell;Vascular inflammation

참고문헌

  1. Pidkovka, N. A., Cherepanova, O. A., Yoshida, T., Alexander, M. R., Deaton, R. A., Thomas, J. A., Leitinger, N. and Owens, G. K. (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101, 792-801. https://doi.org/10.1161/CIRCRESAHA.107.152736
  2. Berliner, J. A. and Watson, A. D. (2005) A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9-11. https://doi.org/10.1056/NEJMp058118
  3. Libby, P., Ridker, P. M. and Hansson, G. K. (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325. https://doi.org/10.1038/nature10146
  4. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. and Michel, J. B. (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194-204. https://doi.org/10.1093/cvr/cvs135
  5. Boyle, J. J., Weissberg, P. L. and Bennett, M. R. (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler. Thromb. Vasc. Biol. 23, 1553-1558. https://doi.org/10.1161/01.ATV.0000086961.44581.B7
  6. Gough, P. J., Gomez, I. G., Wille, P. T. and Raines, E. W. (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Invest. 116, 59-69.
  7. Johnson, J. L., Devel, L., Czarny, B., George, S. J., Jackson, C. L., Rogakos, V., Beau, F., Yiotakis, A., Newby, A. C. and Dive, V. (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 31, 528-535. https://doi.org/10.1161/ATVBAHA.110.219147
  8. Mehta, P. K. and Griendling, K. K. (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell. Physiol. 292, 82-97.
  9. Williams, B. (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am. J. Cardiol. 87, 10-17. https://doi.org/10.1016/S0002-9149(01)01507-7
  10. Ferrario, C. M. (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst. 7, 3-14. https://doi.org/10.3317/jraas.2006.003
  11. Park, W. K., Regoli, D. and Rioux, F. (1973) Characterization of angiotensin receptors in vascular and intestinal smooth muscles. Br. J. Pharmacol. 48, 288-301. https://doi.org/10.1111/j.1476-5381.1973.tb06915.x
  12. Lee, D., Lee, K. H., Park, H., Kim, S. H., Jin, T., Cho, S., Chung, J. H., Lim, S. and Park, S. (2013) The effect of soluble RAGE on inhibition of angiotensin II-mediated atherosclerosis in apolipoprotein E deficient mice. PloS One 8, e69669. https://doi.org/10.1371/journal.pone.0069669
  13. Cai, Q., Lanting, L. and Natarajan, R. (2004) Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. American journal of physiology. Am. J. Physiol. Cell Physiol. 287, 707-714.
  14. Rateri, D. L., Moorleghen, J. J., Knight, V., Balakrishnan, A., Howatt, D. A., Cassis, L. A. and Daugherty, A. (2012) Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice. PloS One 7, e51483. https://doi.org/10.1371/journal.pone.0051483
  15. Rateri, D. L., Moorleghen, J. J., Balakrishnan, A., Owens, A. P. 3rd, Howatt, D. A., Subramanian, V., Poduri, A., Charnigo, R., Cassis, L. A. and Daugherty, A. (2011) Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor-/- mice. Circ. Res. 108, 574-581. https://doi.org/10.1161/CIRCRESAHA.110.222844
  16. Doggrell, S. A. (2002) Angiotensin AT-1 receptor antagonism: complementary or alternative to ACE inhibition in cardiovascular and renal disease? Expert Opin. Pharmacother. 11, 1543-1556.
  17. Schmidt, B., Drexler, H. and Schieffer, B. (2004) Therapeutic effects of angiotensin (AT1) receptor antagonists: potential contribution of mechanisms other than AT1 receptor blockade. Am. J. Cardiovasc. Drugs. 4, 361-368. https://doi.org/10.2165/00129784-200404060-00004
  18. Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D. and Shaw, A. (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267, 14998-15004.
  19. Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J. X., Nagashima, M., Lundh, E. R., Vijay, S., Nitecki, D., Morser, J., Stern, D. and Schmidt, A. M. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752-25761. https://doi.org/10.1074/jbc.270.43.25752
  20. Heizmann, C. W., Ackermann, G. E. and Galichet, A. (2007) Pathologies involving the S100 proteins and RAGE. Subcell. Biochem. 45, 93-138. https://doi.org/10.1007/978-1-4020-6191-2_5
  21. Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., Nowygrod, R., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A. and Stern, D. (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699-1712.
  22. Kirstein, M., Brett, J., Radoff, S., Ogawa, S., Stern, D. and Vlassara, H. (1990) Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl. Acad. Sci. U. S. A. 87, 9010-9014. https://doi.org/10.1073/pnas.87.22.9010
  23. Esposito, C., Gerlach, H., Brett, J., Stern, D. and Vlassara, H. (1989) Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med. 170, 1387-1407. https://doi.org/10.1084/jem.170.4.1387
  24. Hudson, B. I., Bucciarelli, L. G., Wendt, T., Sakaguchi, T., Lalla, E., Qu, W., Lu, Y., Lee, L., Stern, D. M., Naka, Y., Ramasamy, R., Yan, S. D., Yan, S. F., D'Agati, V. and Schmidt, A. M. (2003) Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch. Biochem. Biophys. 419, 80-88. https://doi.org/10.1016/j.abb.2003.08.030
  25. Hayakawa, E., Yoshimoto, T., Sekizawa, N., Sugiyama, T. and Hirata, Y. (2012) Overexpression of receptor for advanced glycation end products induces monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cell line. J. Atheroscler. Thromb. 19, 13-22. https://doi.org/10.5551/jat.9472
  26. Jaulmes, A., Thierry, S., Janvier, B., Raymondjean, M. and Marechal, V. (2006) Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J. 20, 1727-1729. https://doi.org/10.1096/fj.05-5514fje
  27. Lippai, D., Bala, S., Petrasek, J., Csak, T., Levin, I., Kurt-Jones, E. A. and Szabo, G. (2013) Alcohol-induced IL-1beta in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J. leukoc. Biol. 94, 171-182. https://doi.org/10.1189/jlb.1212659
  28. Bae, J.-S. and Rezaie, A. R. (2013) Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 46, 544-549. https://doi.org/10.5483/BMBRep.2013.46.11.056
  29. Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C. J., Arnold, B., Nawroth, P., Andersson, U., Harris, R. A. and Harris, H. E. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1-9. https://doi.org/10.1111/j.0300-9475.2005.01534.x
  30. Toure, F., Fritz, G., Li, Q., Rai, V., Daffu, G., Zou, Y. S., Rosario, R., Ramasamy, R., Alberts, A. S., Yan, S. F. and Schmidt, A. M. (2012) Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ. Res. 110, 1279-1293. https://doi.org/10.1161/CIRCRESAHA.111.262519
  31. Menini, S., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Salvi, L., Pesce, C. M., Relucenti, M., Familiari, G., Taurino, M. and Pugliese, G. (2013) The galectin-3/RAGE dyad modulatesvascular osteogenesis in atherosclerosis. Cardiovasc. Res. 100, 472-480. https://doi.org/10.1093/cvr/cvt206
  32. Kim, J. K., Park, S., Lee, M. J., Song, Y. R., Han, S. H., Kim, S. G., Kang, S. W., Choi, K. H., Kim, H. J. and Yoo, T. H. (2012) Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and proinflammatory ligand for RAGE (EN-RAGE) are associated with carotid atherosclerosis in patients with peritoneal dialysis. Atherosclerosis 220, 208-214. https://doi.org/10.1016/j.atherosclerosis.2011.07.115
  33. Goldstein, J. L. and Brown, M. S. (1975) Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99, 181-184.
  34. Nestel, P. J. (1980) Lipoprotein protein receptors and their relation to atherosclerosis. Circ. Res. 46, I106-109.
  35. Kowala, M. C., Recce, R., Beyer, S., Gu, C. and Valentine, M. (2000) Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expression of aortic MCP-1/JE. Atherosclerosis 149, 323-330. https://doi.org/10.1016/S0021-9150(99)00342-1
  36. Basak, J. M., Verghese, P. B., Yoon, H., Kim, J. and Holtzman, D. M. (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J. Biol. Chem. 287, 13959-13971. https://doi.org/10.1074/jbc.M111.288746
  37. Naderi, G. A., Asgary, S., Sarraf-Zadegan, N. and Shirvany, H. (2003) Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell. Biochem. 246, 193-196. https://doi.org/10.1023/A:1023483223842
  38. Basu, S. K., Brown, M. S., Ho, Y. K. and Goldstein, J. L. (1979) Degradation of low density lipoprotein . dextran sulfate complexes associated with deposition of cholesteryl esters in mouse macrophages. J. Biol. Chem. 254, 7141-7146.
  39. Sun, Y. and Chen, X. (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species. Funda. Clin. Pharmacol. 25, 572-579. https://doi.org/10.1111/j.1472-8206.2010.00885.x
  40. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T. and Masaki, T. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73-77. https://doi.org/10.1038/386073a0
  41. Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G. and Robenek, H. (2004) Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 1789-1795. https://doi.org/10.1161/01.ATV.0000140061.89096.2b
  42. Limor, R., Kaplan, M., Sawamura, T., Sharon, O., Keidar, S., Weisinger, G., Knoll, E., Naidich, M. and Stern, N. (2005) Angiotensin II increases the expression of lectin-like oxidized low-density lipoprotein receptor-1 in human vascular smooth muscle cells via a lipoxygenase-dependent pathway. Am. J. Hypertens. 18, 299-307. https://doi.org/10.1016/j.amjhyper.2004.09.008
  43. Hofnagel, O., Luechtenborg, B., Eschert, H., Weissen-Plenz, G., Severs, N. J. and Robenek, H. (2006) Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in Watanabe heritable hyperlipidemic rabbits: a new pleiotropic effect of statins. Arterioscler. Thromb. Vasc. Biol. 26, 604-610.
  44. Morawietz, H. (2007) LOX-1 and atherosclerosis: proof of concept in LOX-1-knockout mice. Circ. Res. 100, 1534-1536. https://doi.org/10.1161/CIRCRESAHA.107.101105
  45. Cole, J. E., Georgiou, E. and Monaco, C. (2010) The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010, 393946.
  46. Edfeldt, K., Swedenborg, J., Hansson, G. K. and Yan, Z. Q. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158-1161.
  47. Curtiss, L. K. and Tobias, P. S. (2009) Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50 (Suppl), 340-345. https://doi.org/10.1194/jlr.R800056-JLR200
  48. Yang, X., Coriolan, D., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 25, 2308-2314. https://doi.org/10.1161/01.ATV.0000187468.00675.a3
  49. Schoneveld, A. H., Oude Nijhuis, M. M., van Middelaar, B., Laman, J. D., de Kleijn, D. P. and Pasterkamp, G. (2005) Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovas. Res. 66, 162-169. https://doi.org/10.1016/j.cardiores.2004.12.016
  50. Madan, M. and Amar, S. (2008) Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PloS One 3, e3204. https://doi.org/10.1371/journal.pone.0003204
  51. de Graaf, R., Kloppenburg, G., Kitslaar, P. J., Bruggeman, C. A. and Stassen, F. (2006) Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect. 8, 1859-1865. https://doi.org/10.1016/j.micinf.2006.02.024
  52. Lee, G. L., Chang, Y. W., Wu, J. Y., Wu, M. L., Wu, K. K., Yet, S. F. and Kuo, C. C. (2012) TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler. Thromb. Vasc. Biol. 32, 2751-2760. https://doi.org/10.1161/ATVBAHA.112.300302
  53. Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovas. Res. 99, 483-493. https://doi.org/10.1093/cvr/cvt107
  54. Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am. J. Physiol. Heart. Circ. Physiol. 289, 1069-1076. https://doi.org/10.1152/ajpheart.00143.2005
  55. Heo, S. K., Yun, H. J., Noh, E. K., Park, W. H. and Park, S. D. (2008) LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunol. Lett. 120, 57-64. https://doi.org/10.1016/j.imlet.2008.07.002
  56. Li, H., Xu, H. and Sun, B. (2012) Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-kappaB signaling in human arterial smooth muscle cells. Mol. Med. Rep. 6, 774-778. https://doi.org/10.3892/mmr.2012.1010
  57. Hayashi, C., Papadopoulos, G., Gudino, C. V., Weinberg, E. O., Barth, K. R., Madrigal, A. G., Chen, Y., Ning, H., LaValley, M., Gibson, F. C. 3rd, Hamilton, J. A. and Genco, C. A. (2012) Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J. Immunol. 189, 3681-3688. https://doi.org/10.4049/jimmunol.1201541
  58. Delbridge, L. M. and O'Riordan, M. X. (2007) Innate recognition of intracellular bacteria. Curr. Opin. Immunol. 19, 10-16. https://doi.org/10.1016/j.coi.2006.11.005
  59. Bracey, N. A., Beck, P. L., Muruve, D. A., Hirota, S. A., Guo, J., Jabagi, H., Wright, J. R. Jr., Macdonald, J. A., Lees-Miller, J. P., Roach, D., Semeniuk, L. M. and Duff, H. J. (2013) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1beta. Exp. Physiol. 98, 462-472. https://doi.org/10.1113/expphysiol.2012.068338
  60. Srinivasula, S. M., Poyet, J. L., Razmara, M., Datta, P., Zhang, Z. and Alnemri, E. S. (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119-21122. https://doi.org/10.1074/jbc.C200179200
  61. Behrends, C., Sowa, M. E., Gygi, S. P. and Harper, J. W. (2010) Network organization of the human autophagy system. Nature 466, 68-76. https://doi.org/10.1038/nature09204
  62. Shi, C. S., Shenderov, K., Huang, N. N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., Sher, A. and Kehrl, J. H. (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255-263. https://doi.org/10.1038/ni.2215
  63. Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W. and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
  64. Shimabukuro, M., Hirata, Y., Tabata, M., Dagvasumberel, M., Sato, H., Kurobe, H., Fukuda, D., Soeki, T., Kitagawa, T., Takanashi, S. and Sata, M. (2013) Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 1077-1084. https://doi.org/10.1161/ATVBAHA.112.300829
  65. Zuurbier, C. J., Jong, W. M., Eerbeek, O., Koeman, A., Pulskens, W. P., Butter, L. M., Leemans, J. C. and Hollmann, M. W. (2012) Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PloS One 7, e40643. https://doi.org/10.1371/journal.pone.0040643
  66. Li, Y., Xu, S., Jiang, B., Cohen, R. A. and Zang, M. (2013) Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PloS One 8, e67532. https://doi.org/10.1371/journal.pone.0067532
  67. Menu, P., Pellegrin, M., Aubert, J. F., Bouzourene, K., Tardivel, A., Mazzolai, L. and Tschopp, J. (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137. https://doi.org/10.1038/cddis.2011.18
  68. Qiao, Y., Wang, P., Qi, J., Zhang, L. and Gao, C. (2012) TLR-induced NF-kappaB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 586, 1022-1026. https://doi.org/10.1016/j.febslet.2012.02.045
  69. Xiao, H., Lu, M., Lin, T. Y., Chen, Z., Chen, G., Wang, W. C., Marin, T., Shentu, T. P., Wen, L., Gongol, B., Sun, W., Liang, X., Chen, J., Huang, H. D., Pedra, J. H., Johnson, D. A. and Shyy, J. Y. (2013) Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632-642. https://doi.org/10.1161/CIRCULATIONAHA.113.002714
  70. Shi, Z. D. and Tarbell, J. M. (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39, 1608-1619. https://doi.org/10.1007/s10439-011-0309-2
  71. Tedgui, A. and Mallat, Z. (2001) Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88, 877-887. https://doi.org/10.1161/hh0901.090440

피인용 문헌

  1. 1. The Role of Protein Arginine Methyltransferases in Inflammatory Responses vol.2016, 2016, doi:10.5483/BMBRep.2014.47.1.285
  2. 2. Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching vol.186, pp.8, 2016, doi:10.5483/BMBRep.2014.47.1.285
  3. 3. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia vol.30, pp.7, 2016, doi:10.5483/BMBRep.2014.47.1.285
  4. 4. Inflammation in arterial diseases vol.67, pp.1, 2015, doi:10.5483/BMBRep.2014.47.1.285
  5. 5. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation vol.21, pp.2, 2016, doi:10.5483/BMBRep.2014.47.1.285
  6. 6. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury vol.48, pp.11, 2015, doi:10.5483/BMBRep.2014.47.1.285
  7. 7. Matrix Metalloproteinases and Subclinical Atherosclerosis in Chronic Kidney Disease: A Systematic Review vol.2016, 2016, doi:10.5483/BMBRep.2014.47.1.285
  8. 8. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract vol.453, pp.3, 2014, doi:10.5483/BMBRep.2014.47.1.285
  9. 9. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient vol.69, 2015, doi:10.5483/BMBRep.2014.47.1.285
  10. 10. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis vol.5, pp.1, 2015, doi:10.5483/BMBRep.2014.47.1.285
  11. 11. Platelet-Derived Growth Factor Receptor-β Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice vol.44, pp.6, 2016, doi:10.5483/BMBRep.2014.47.1.285
  12. 12. Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid vol.21, pp.6, 2016, doi:10.5483/BMBRep.2014.47.1.285
  13. 13. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.06, 2016, doi:10.5483/BMBRep.2014.47.1.285
  14. 14. Angiotensin-(1–7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway vol.73, 2015, doi:10.5483/BMBRep.2014.47.1.285
  15. 15. Upregulation of TRPC1/6 may be involved in arterial remodeling in rat vol.195, pp.1, 2015, doi:10.5483/BMBRep.2014.47.1.285
  16. 16. Stigmasterol protects against Ang II-induced proliferation of the A7r5 aortic smooth muscle cell-line vol.6, pp.7, 2015, doi:10.5483/BMBRep.2014.47.1.285
  17. 17. Lipopolysaccharide induced vascular smooth muscle cells proliferation: A new potential therapeutic target for proliferative vascular diseases vol.50, pp.2, 2017, doi:10.5483/BMBRep.2014.47.1.285
  18. 18. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization vol.17, pp.2, 2016, doi:10.5483/BMBRep.2014.47.1.285
  19. 19. Thymoquinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities vol.7, 2017, doi:10.5483/BMBRep.2014.47.1.285
  20. 20. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling vol.2015, 2015, doi:10.5483/BMBRep.2014.47.1.285
  21. 21. Cyanidin-3-O-glucoside Induces Apoptosis and Inhibits Migration of Tumor Necrosis Factor-α-Treated Rat Aortic Smooth Muscle Cells vol.16, pp.3, 2016, doi:10.5483/BMBRep.2014.47.1.285
  22. 22. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2 vol.41, pp.2, 2017, doi:10.5483/BMBRep.2014.47.1.285
  23. 23. Analysis of Soluble Molecular Fibronectin-Fibrin Complexes and EDA-Fibronectin Concentration in Plasma of Patients with Atherosclerosis 2016, doi:10.5483/BMBRep.2014.47.1.285
  24. 24. Ursolic acid induced anti-proliferation effects in rat primary vascular smooth muscle cells is associated with inhibition of microRNA-21 and subsequent PTEN/PI3K vol.781, 2016, doi:10.5483/BMBRep.2014.47.1.285
  25. 25. Vasoregression: A Shared Vascular Pathology Underlying Macrovascular And Microvascular Pathologies? vol.19, pp.12, 2015, doi:10.5483/BMBRep.2014.47.1.285
  26. 26. In vivo treatment of rat arterial adventitia with interleukin-1β induces intimal proliferation via the JAK2/STAT3 signaling pathway vol.13, pp.4, 2016, doi:10.5483/BMBRep.2014.47.1.285