DOI QR코드

DOI QR Code

The Effect of Co2+-Ion Exchange Time into Zeolite Y (FAU, Si/Al = 1.56): Their Single-Crystal Structures

  • Seo, Sung Man ;
  • Kim, Hu Sik ;
  • Chung, Dong Yong ;
  • Suh, Jeong Min ;
  • Lim, Woo Taik
  • Received : 2013.10.11
  • Accepted : 2013.10.30
  • Published : 2014.01.20

Abstract

Three single crystals of fully dehydrated $Co^{2+}$-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of $Na_{75}$-Y ($|Na_{75}|[Si_{117}Al_{75}O_{384}]$-FAU) with aqueous streams 0.05 M in $Co(NO_3)_2$, pH = 5.1, at 294 K for 6 h, 12 h, and 18 h, respectively, followed by vacuum dehydration at 673 K. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3m at 100(1) K. They were refined to the final error indices $R_1/wR_2$ = 0.0437/0.1165, 0.0450/0.1228, and 0.0469/0.1278, respectively. Their unit-cell formulas are $|Co_{29.1}Na_{11.8}H_{5.0}|[Si_{117}Al_{75}O_{384}]$-FAU, $|Co_{29.8}Na_{11.0}H_{4.4}|[Si_{117}Al_{75}O_{384}]$-FAU, and $|Co_{30.3}Na_{9.5}H_{4.9}|[Si_{117}Al_{75}O_{384}]$-FAU, respectively. In all three crystals, $Co^{2+}$ ions occupy sites I, I' and II; $Na^+$ ions are also at site II. The tendency of $Co^{2+}$ exchange slightly increases with increasing contact time as $Na^+$ content and the unit cell constant of the zeolite framework decrease.

Keywords

$Co^{2+}$ ion;Zeolite Y;Ion-exchange time;Fully dehydration;Crystal structure

References

  1. Seo, S. M.; Lim, W. T.; Seff, K. Microporous Mesoporous Mater. 2013, 170, 67. https://doi.org/10.1016/j.micromeso.2012.11.019
  2. Tang, Q.; Zhang, Q.; Wu, H.; Wang, Y. J. Catal. 2005, 230, 384. https://doi.org/10.1016/j.jcat.2004.12.017
  3. Patil, M. V.; Yadav, M. K.; Jasra, R. V. J. Mol. Catal. A 2007, 277,72. https://doi.org/10.1016/j.molcata.2007.07.020
  4. Rakic, V. M.; Hercigonja, R. V.; Dondur, V. T. Microporous Mesoporous Mater. 1999, 27, 27. https://doi.org/10.1016/S1387-1811(98)00224-8
  5. Koranyi, T. I.; Pham, N. H.; Jentys, A.; Vinek, H. Studies in Surface Science and Catalysis 1997, 106, 509. https://doi.org/10.1016/S0167-2991(97)80051-1
  6. Furusawa, T.; Seshan, K.; Lefferts, L.; Aika, K. Appl. Catal. B 2002, 39, 233. https://doi.org/10.1016/S0926-3373(02)00100-5
  7. Tsuruya, S.; Miyamoto, H.; Sakae, T.; Masai, M. J. Catal. 1980, 64, 260. https://doi.org/10.1016/0021-9517(80)90501-1
  8. Nakashima, D.; Ichihashi, Y.; Nishiyama, S.; Tsuruya, S. J. Mol. Catal. A 2006, 259, 108. https://doi.org/10.1016/j.molcata.2006.05.068
  9. Ramachandran, B.; Greene, H. L.; Chatterjee, S. Appl. Catal., B 1996, 8, 157. https://doi.org/10.1016/0926-3373(95)00060-7
  10. Tsuruya, S.; Tsukamoto, M.; Watanabe, M.; Masai, M. J. Catal. 1985, 93, 303. https://doi.org/10.1016/0021-9517(85)90177-0
  11. De Garcia, E. P.; De Goldwasser, M. R.; Parra, C. F.; Leal, O. Appl. Catal. 1989, 50, 55. https://doi.org/10.1016/S0166-9834(00)80825-8
  12. Li, Y; Armor, J. N. Appl. Catal., A 1999, 188, 211. https://doi.org/10.1016/S0926-860X(99)00236-7
  13. Labhsetwar, N.; Dhakad, M.; Biniwale, R.; Mitsuhashi, T.; Haneda, H.; Reddy, P. S. S.; Bakardjieva, S.; Subrt, J.; Kumar, S.; Kumar, V.; Saiprasad, P.; Rayalu, S. Catal. Today 2009, 141, 205. https://doi.org/10.1016/j.cattod.2008.03.032
  14. Inokawa, H.; Nishimoto, S.; Kameshima, Y.; Miyake, M. Int. J. Hydrogen Energy 2010, 35, 11719. https://doi.org/10.1016/j.ijhydene.2010.08.092
  15. Verberckmoes, A. A.; Weckhuysen, B. M.; Pelgrism, J.; Schoonheydt, R. A. J. Phys. Chem. 1995, 99, 15222. https://doi.org/10.1021/j100041a043
  16. Seo, S. M.; Lim, W. T. Catal. Today 2013, 204, 179. https://doi.org/10.1016/j.cattod.2012.09.007
  17. Kim, H. S.; Bae, D.; Lim, W. T.; Seff, K. J. Phys. Chem. C 2012, 116, 9009. https://doi.org/10.1021/jp300321x
  18. Breck, D. W. Zeolite Molecular Sieves, John Wiley & Sons: New York, 1973; p 529.
  19. Armor, J. N. In Science and Technology in Catalysis in 1994, ed. By Izumi, Y., Arai, H., Iwamoto, M. Studies in Surface Science and Catalysis Series, Kodansha, Tokyo, 1995, vol. 92, p 51.
  20. Bae, D.; Seff, K. Microporous Mesoporous Mater. 1999, 33, 265. https://doi.org/10.1016/S1387-1811(99)00146-8
  21. Borissenko, E.; Porcher, F.; Bouche, A.; Lecomte, C.; Souhassou, M. Microporous Mesoporous Mater. 2008, 114, 155. https://doi.org/10.1016/j.micromeso.2007.12.031
  22. Lim, W. T.; Seo, S. M.; Wang, L.; Lu, G. Q.; Seff, K. Microporous Mesoporous Mater. 2010, 129, 11. https://doi.org/10.1016/j.micromeso.2009.08.028
  23. Ferchiche, S.; Valcheva-Traykova, M.; Vaughan, D. E. W.; Warzywoda, J.; Sacco, Jr., A. J. Crystal Growth 2001, 222, 801. https://doi.org/10.1016/S0022-0248(00)00979-9
  24. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307. https://doi.org/10.1016/S0076-6879(97)76066-X
  25. Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
  26. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1997.
  27. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390. https://doi.org/10.1107/S0567739468000756
  28. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, 71-98.
  29. Cromer, D. T. Acta Crystallogr. 1965, 18, 17. https://doi.org/10.1107/S0365110X6500004X
  30. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150.
  31. Loewenstein, W. Am. Mineral. 1954, 39, 92.
  32. Breck, D. W. Zeolite Molecular Sieves; John Wiley & Sons: New York, 1974; p 93.
  33. Van Bekkum, H.; Flanigen, E. M.; Jacobs, P. A.; Jansen, J. C. Introduction to Zeolite Science and Practice; Elsevier, 2001; p 44.
  34. Handbook of Chemistry and Physics, 70th ed., CRC Press: Cleveland, OH, 1989/1990; p F-187.
  35. Gallezot, P.; Imelik, B. J. Chim. Phys. 1974, 71(2), 155.
  36. Kim, C. W.; Jung, K. J.; Heo, N. H.; Kim, S. H.; Hong, S. B.; Seff, K. J. Phys. Chem. C 2009, 113, 5164. https://doi.org/10.1021/jp810846x
  37. Seo, S. M.; Lim, W. T.; Seff, K. J. Phys. Chem. C 2012, 116, 963. https://doi.org/10.1021/jp209542x
  38. Kim, H. S. Ph.D. Thesis, Andong National University, Korea, 2012.

Cited by

  1. -Ion Exchange in Zeolites Y (FAU, Si/Al = 1.56) and Their Single-Crystal Structures vol.120, pp.50, 2016, https://doi.org/10.1021/acs.jpcc.6b08733
  2. Structural comparison of partially dehydrated partially Co2+-exchanged zeolites X (FAU, Si/Al = 1.40) and Y (FAU, Si/Al = 1.70) vol.23, pp.1, 2016, https://doi.org/10.1007/s10934-015-0059-x