DOI QR코드

DOI QR Code

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog ;
  • Hwang, Cheong-Soo
  • Received : 2013.08.27
  • Accepted : 2013.10.28
  • Published : 2014.01.20

Abstract

Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Keywords

ZnS;ZnS:Cu;ZnS:Mn nanocrystals;MPA capping;White light emission

References

  1. Alivisatos, P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  2. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  3. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47. https://doi.org/10.1038/nbt767
  4. Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885. https://doi.org/10.1039/a802705f
  5. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102,3655. https://doi.org/10.1021/jp9810217
  6. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31. https://doi.org/10.1016/j.cap.2003.11.075
  7. Yu, S. H.; Wu, Y. S.; Yang, J. Chem. Mater. 1998, 9, 2312.
  8. Brus, L. E. Appl. Phys. A: Solid Surf. 1991, 53, 465. https://doi.org/10.1007/BF00331535
  9. Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, B. O.; Rubner, M. F. Appl. Phys. Lett. 1995, 66, 11.
  10. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861.
  11. Jun, Y. W.; Jang, J. T.; Cheon, J. W. Bull. Korean Chem. Soc. 2006, 27, 961. https://doi.org/10.5012/bkcs.2006.27.7.961
  12. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47. https://doi.org/10.1038/nbt767
  13. Heath, J. R. Acc. Chem. Res. 1999, 32.
  14. Hwang, C. S.; Lee, N. R.; Kim, Y. A.; Park, Y. B. Bull. Korean Chem. Soc. 2006, 27, 1809. https://doi.org/10.5012/bkcs.2006.27.11.1809
  15. Lee, J. H.; Kim, Y. A.; Kim, K.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. S. Bull. Korean Chem. Soc. 2007, 28,1091. https://doi.org/10.5012/bkcs.2007.28.7.1091
  16. Kim, J. E.; Hwang, C. S.; Yoon, S. Bull. Korean Chem. Soc. 2008, 29, 1247. https://doi.org/10.5012/bkcs.2008.29.6.1247
  17. Huang, J.; Li, G.; Wu, E.; Xu, Q.; Yang, Y. Adv. Mater. 2006, 18,114. https://doi.org/10.1002/adma.200501105
  18. Tamura, T.; Setomote, T.; Taguchi, T. J. Lumin. 2000, 87, 1180.
  19. Bowers, M. J.; McBride, J. R.; Rosental, S. J. J. Am. Chem. Soc. 2005, 127, 15378. https://doi.org/10.1021/ja055470d
  20. Lee, S. M.; Hwang, C. S. Bull. Korean Chem. Soc. 2013, 34, 321. https://doi.org/10.5012/bkcs.2013.34.1.321
  21. Rhys-Williams, A. T.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  22. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229. https://doi.org/10.1021/j100820a009
  23. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  24. International Union of Crystallography in International Tables for X-ray Crystallography, Part III; Dordrecht, Netherlands, 1985; p 318.
  25. Kushida, T.; Tanaka, Y.; Oka, Y. Solid State Commun. 1974, 14,617. https://doi.org/10.1016/0038-1098(74)91024-2
  26. Hasse, M. A.; Qui, J.; DePuydt, J. M.; Cheng, H. Appl. Phys. Lett. 1991, 59, 1272. https://doi.org/10.1063/1.105472
  27. Lippens, P. E.; Lannoo, M. Phys. Rev. B 1989, 39, 10935. https://doi.org/10.1103/PhysRevB.39.10935
  28. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Colloids Surf. A 1997, 127, 39. https://doi.org/10.1016/S0927-7757(96)03968-4
  29. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853. https://doi.org/10.1039/b303287f
  30. Palve, A. M.; Garje, S. S. Bull. Mater. Sci. 2011, 34, 667. https://doi.org/10.1007/s12034-011-0179-0
  31. Goswami, B.; Pal, S.; Sarkar, P. J. Phys. Chem. C 2008, 112,11630. https://doi.org/10.1021/jp801781s
  32. Peng, W. Q.; Cong, G. W.; Qu, S, C.; Wang, Z. G. Opt. Mater. 2006, 29, 313. https://doi.org/10.1016/j.optmat.2005.10.003
  33. Bol, A. A.; Frewerda, J.; Bergwerff, J. A.; Meijerink, A. J. Lumin. 2002, 99, 325. https://doi.org/10.1016/S0022-2313(02)00350-2
  34. Chen, W.; Su, F.; Li, G.; Joly, A. G.; Malm, J.-O.; Bovin, J.-O. J. Appl. Phys. 2002, 92, 1950. https://doi.org/10.1063/1.1495070
  35. Dong, B.; Cao, L.; Su, G.; Liu, W.; Zhai, H. J. Alloys Compd. 2010, 429, 363.
  36. Lu, X.; Yang, J.; Fu, Y.; Liu, Q.; Qi, B.; Lu, C.; Su, Z. Nanotech. 2010, 21, 115702. https://doi.org/10.1088/0957-4484/21/11/115702
  37. Sarkar, R.; Tiwary, C. S.; Kumbhakar, P.; Basu, S.; Mitra, A. K. Physica E 2008, 40, 3115. https://doi.org/10.1016/j.physe.2008.04.013
  38. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15,2854. https://doi.org/10.1021/cm034081k
  39. Dichburrn, R. W. Light, 2nd Ed.; Blackie and Sons: London, 1963; p 582.
  40. Kasuya, R.; Kawano, A.; Isobe, T. Appl. Phys. Lett. 2007, 91,111916. https://doi.org/10.1063/1.2785131
  41. George, C. Mastering Digital Flash Photography: The Complete Reference Guide; Sterling Publishing Company: 2008; p 11.
  42. Brisdon, A. K. Inorganic Spectroscopic Methods; Oxford Univ. Press: 1998; chap. 2, p 11.
  43. Pandiarajan, S.; Umadevi, M.; Rajaran, R. K.; Ramakrishinan, V. J. Spectrochim. Acta A 2005, 62, 630. https://doi.org/10.1016/j.saa.2005.02.008
  44. Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71. https://doi.org/10.1016/S0020-1693(00)82780-2
  45. Ito, K.; Bernstein, H. J. Can. J. Chem. 1956, 34, 170. https://doi.org/10.1139/v56-021
  46. Castro, J. L.; Lopez-Ramirez, M. R.; Arenas, J. F.; Otero, J. C. J. Raman Spectrosc. 2004, 35, 997. https://doi.org/10.1002/jrs.1247
  47. Schneider, J.; Kirby, R. D. Phys. Rev. B 1972, 6, 1290. https://doi.org/10.1103/PhysRevB.6.1290

Cited by

  1. In vivo cation exchange in quantum dots for tumor-specific imaging vol.8, pp.1, 2017, https://doi.org/10.1038/s41467-017-00153-y
  2. Influence of thiourea on the synthesis and characterization of chemically deposited nano structured zinc sulphide thin films vol.29, pp.9, 2018, https://doi.org/10.1007/s10854-018-8770-4