DOI QR코드

DOI QR Code

Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display

플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향

  • Kim, Seongjong (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kim, Moonkeun (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kim, Jong-Kwan (Department of Electrical and Electronic Engineering, Anyang University)
  • 김성종 (고려대학교 제어계측공학과) ;
  • 김문근 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과) ;
  • 김종관 (안양대학교 전기.전자공학과)
  • Received : 2013.10.08
  • Accepted : 2013.12.11
  • Published : 2014.01.01

Abstract

Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.

References

  1. Y. Kuo, The Electrochemical Society Interface, (Pennington, New Jersey, 2013).
  2. K. Fukuda and N. Ibaraki, Elctronics and Communications in Jpn, 76, 12 (1993).
  3. J. Jang, Materialstoday, 9, 46 (2006).
  4. W. A. McDonald, J. Mater. Chem, 14, 4 (2004). https://doi.org/10.1039/b310846p
  5. T. Wang, CS Mantech Conference (Tampa, Florida, 2009).
  6. C. M. Huang, L. C. Chen, K. W. Cheng, and G. T. Pan, J. Mol. Catalys., A, 261, 218 (2007). https://doi.org/10.1016/j.molcata.2006.08.020
  7. F. Alonso, M. Rinner, A. Loinaz, J. I. Onate, W. Ensinger, and B. Rauschnbach, Surf. Coat. Technol., 93, 305 (1997). https://doi.org/10.1016/S0257-8972(97)00065-0
  8. M. R. Sanchis, O. Calvo, O. Fenollar, D. Garcia, and R. Balart, Polym. Test., 27, 75 (2008). https://doi.org/10.1016/j.polymertesting.2007.09.002
  9. S. Rauf, S. W. Lim, and P. L. G. Ventzek, J. Appl Phys.., 98, 024305 (2005). https://doi.org/10.1063/1.1949272
  10. G. Santana, J. Fandino, A. Ortiz, and J. C. Alonso, J. Non-crystalline Solids, 351, 922 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.02.007
  11. S. J. Park and J. S. Kim, J. Colloid and Interface Science, 244, 336 (2001). https://doi.org/10.1006/jcis.2001.7920
  12. D. Ikeda, M. Ogawa, Y. Hara, Y. Nishimura, O. Odusanya, K. Azuma, S. Matsuda, M. Yatsuzuka, and A. Murakami, Surf. Coat. Technol., 156, 301 (2002). https://doi.org/10.1016/S0257-8972(02)00094-4
  13. N. S. McIntyre, R. N. S. Sodhi, and D. H. Hunter, J. Appl. Polym. Sci, 40, 1903 (1990). https://doi.org/10.1002/app.1990.070401109
  14. E. P. Gusev, H. C. Lu, E. L. Garfunkel, T. Gustafsson, and M. L. Green, IBM J. Res. Dev., 43, 265 (1999). https://doi.org/10.1147/rd.433.0265
  15. C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. C. Yu, T. H. Hou, M. F. Wang, S. C. Chen, C. H. Yu, and M. S. Liang, IEEE Trans. Elec. Dev., 22, 378 (2001). https://doi.org/10.1109/55.936349
  16. Y. H. Ham, A. M. Efremov, S. J. Yun, J. K. Kim, N. K. Min, and K. H. Kwon, Thin Solid Films, 517, 4242 (2009). https://doi.org/10.1016/j.tsf.2009.02.008
  17. R. Chen, D. F. Qi, Y. J. Ruan, S. W. Pan, S. Y. Chen, S. Xie, C. Li, H. K. Lai, and H. D. Sun, Appl. Phys., 106, 251 (2012).
  18. D. M. Schneider, A. Ersoy, J. Maibach, D. Schneider, and E. Obermeier, Sens. Master., 7, 121 (1995).
  19. J. Kanicki and M. S. Crowder, Appl. Phys. Lett., 59, 1723 (1991). https://doi.org/10.1063/1.106230
  20. Y. B. Park and S. W. Rhee, J. Mater. Sci., 9, 515 (2001).
  21. Y. Manabe, J. Appl. Phys., 66, 2475 (1989). https://doi.org/10.1063/1.344258
  22. Y. Hirohata, N. Shimamoto, T. Hino, T. Yamashima, and K. Yabe, Thin Solid Films, 253, 425 (1994). https://doi.org/10.1016/0040-6090(94)90360-3
  23. E. David, Kotechki, and Jonathan D. Chapple-Sokol, J. Appl. Phys., 77, 1284 (1995). https://doi.org/10.1063/1.358930
  24. M. C. Hugon, B. Agius, F. Abel, J. L. Courant, and M. Puech, J. Vac. Sci. Technol A., 13, 2900 (1995). https://doi.org/10.1116/1.579609
  25. G. B. Zhao, S. V. B. Janardhan Garikipati, X. Hu, M. D. Argyle, and M. Radosz, AlChE Journal (2005).
  26. G. H. Kim, A. M. Efremov, D. P. Kim, and C. I. Kim, Micro. Engr., 81, 96 (2005). https://doi.org/10.1016/j.mee.2005.04.003
  27. T. Kimura and H. Kasugai, J. Appl. Phys., 108, 033305 (2010). https://doi.org/10.1063/1.3468603
  28. K. Tao, D. Mao, and J. Hopwood, J. Appl. Phys., 91, 4040 (2002). https://doi.org/10.1063/1.1455139
  29. E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Source. Sci. Technol., 18, 045001 (2009). https://doi.org/10.1088/0963-0252/18/4/045001
  30. Y. Tanaka and T. Sakuta, J. Phys. D, 35, 468 (2002). https://doi.org/10.1088/0022-3727/35/5/309