DOI QR코드

DOI QR Code

Piezoelectric Properties of 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3 with 0.1 MnO2 Addition at Varying Sintering Temperatures

소결 온도에 따른 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3-0.1 MnO2의 압전 특성

  • Jung, Hye-Rin (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Tae-Ho (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Min-Ho (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Jo, Ye-Won (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University)
  • 정혜린 (경상대학교 세라믹공학과) ;
  • 이성갑 (경상대학교 세라믹공학과) ;
  • 이태호 (경상대학교 세라믹공학과) ;
  • 김민호 (경상대학교 세라믹공학과) ;
  • 조예원 (경상대학교 세라믹공학과)
  • Received : 2013.07.31
  • Accepted : 2013.09.23
  • Published : 2014.01.01

Abstract

In this study, lead-free Piezoelectric $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ ceramics were fabricated using mixed oxide method and the effects of various sintering temperature on the structural and electrical properties were investigated. For the $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ (NKN-SCT-$MnO_2$) ceramics sintered at temperatures of $1,025{\sim}1,100^{\circ}C$. The results indicated that all specimens were perovskite single phase formation without any second phase. It has been shown that relative density is increased to increasing sintering temperature. When the sintered temperature at $1,075^{\circ}C$, highest sintered density and maximum value of $4.45g/cm^3$. Average grain size is increased to increasing sintering temperature. The electromechanical coupling factor, dielectric constant, dielectric loss, d33 and curie temperature at the sintering temperature $1,075^{\circ}C$ of NKN-SCT-$MnO_2$ specimens were 0.22, 511, 0.033, 103 and $380^{\circ}C$, respectively.

References

  1. H. N. Al-Shareef, A. I. Kingon, X. Chen, K. R. Bellur, and O. Auciello, J. Mater. Res., 9, 2968 (1994). https://doi.org/10.1557/JMR.1994.2968
  2. R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, Appl. Phys. Lett., 64, 2673 (1994). https://doi.org/10.1063/1.111488
  3. Y. Guo, K. Kakimoto, and H Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  4. K. Sugnaga, K. Shibata, K. Watanabe, A. Nomoto, F. Horikiri, and T. Mishima, Jpn. J. Appl. Phys., 49, 09MA05 (2010).
  5. G. Shirane, J. Bernard, J. Hole, D. Jenko, and M. Kosec, J. Eur. Ceram. Soc., 25, 2707 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.127
  6. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, Jpn. J. Appl. Phys., Part 1, 41, 7119 (2002). https://doi.org/10.1143/JJAP.41.7119
  7. Y. Guo, K. Kakimoto, and H Ohsato, Solid State Commun., 129, 129 (2004). https://doi.org/10.1016/j.ssc.2003.09.025
  8. K. Kakimoto, I. Masuda, and H. Ohsato, Jpn. J. Appl. Phys., Part 1, 42, 6102 (2003). https://doi.org/10.1143/JJAP.42.6102
  9. S. Tashiro, H. Nagamatsu, and K. Nagata, Jpn. J. Appl. Phys., Part 1, 41, 7113 (2002). https://doi.org/10.1143/JJAP.41.7113
  10. T. H. Lee, D. Y. Kim, S. H. Jo, G. H. Jeong, and S. G. Lee, Trans. KIEE., 60, 2093 (2011).
  11. H. J. Hegemann, J. Phys. C: Solid State Phys., 11, 3333 (1978). https://doi.org/10.1088/0022-3719/11/15/031