DOI QR코드

DOI QR Code

Comparison of Bacterial Communities in Beach Sands along the East Coast of North Gyeongsang Province

경상북도 동해안 해변모래에 서식하는 미생물 군집 비교

  • 강용호 (영남대학교 생명공학부)
  • Received : 2014.09.30
  • Accepted : 2014.12.16
  • Published : 2014.12.31

Abstract

Marine beach sands with bacterial pathogens may cause increased outcomes of illness among beachgoers in summer. In this study, pyrosequencing of 16S ribosomal DNAs extracted from 12 beach sands was performed to understand how the environmental factors of wastewaters or human wastes affected the distribution of bacterial communities at the beach of North Gyeongsang province (Yeongdeok and Pohang counties) in the middle of October. It was found that Acidobacteria were dominantly distributed in the sands near the clean seawaters, Proteobacteria in the sands near the river waters, Cyanobacteria in the sands near the wastewaters, and Bacteroidetes in the sands near the beach park. Other phyla groups such as Actinobacteria, Chlorobi, Deferribacteres, Deinococcus-thermus, Firmicutes, Gemmatimonadetes, Nitrospirae, and/or Verrucomicrobia were distributed at low relative abundance (1-5%).

Keywords

beach sand;cyanobacteria;microbial community;pyrosequencing;wastewater

Acknowledgement

Supported by : 국토해양부

References

  1. Anda, D., Buki, G., Krett, G., Makk, J., Marialigeti, K., Eross, A., Madl-Szonyi, J., and Borsodi, A.K. 2014. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary). Acta. Microbiol. Immunol. Hung. 61, 329-346. https://doi.org/10.1556/AMicr.61.2014.3.7
  2. Asano, R., Nakai, Y., Kawada, W., Shimura, Y., Inamoto, T., and Fukushima, J. 2013. Seawater inundation from the 2011 Tohoku tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639-646. https://doi.org/10.1007/s00248-013-0261-9
  3. Boehm, A.B. and Weisberg, S.B. 2005. Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. Environ. Sci. Technol. 39, 5575-5583. https://doi.org/10.1021/es048175m
  4. Bonilla, T.D., Nowosielski, K., Cuvelier, M., Hartz, A., Green, M., Esiobu, N., McCorquodale, D.S., Fleisher, J.M., and Rogerson, A. 2007. Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar. Pollut. Bull. 54, 1472-1482. https://doi.org/10.1016/j.marpolbul.2007.04.016
  5. Colford, J.M. Jr., Schiff, K.C., Griffith, J.F., Yau, V., Arnold, B.F., Wright, C.C., Gruber, J.S., Wade, T.J., Burns, S., Hayes, J., and et al. 2012. Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water. Water Res. 46, 2176-2186. https://doi.org/10.1016/j.watres.2012.01.033
  6. Curiel-Ayala, F., Quinones-Ramirez, E.I., Pless, R.C., and Gonzalez-Jasso, E. 2012. Comparative studies on Enterococcus, Clostridium perfringens and Staphylococcus aureus as quality indicators in tropical seawater at a Pacific Mexican beach resort. Mar. Pollut. Bull. 64, 2193-2198. https://doi.org/10.1016/j.marpolbul.2012.07.052
  7. Davies, C.M., Long, J.A., Donald, M., and Ashbolt, N.J. 1995. Survival of fecal microorganisms in marine and freshwater sediments. Appl. Environ. Microbiol. 61, 1888-1896.
  8. Dwight, R.H., Fernandez, L.M., Baker, D.B., Semenza, J.C., and Olson, B.H. 2005. Estimating the economic burden from illnesses associated with recreational coastal water pollution--a case study in Orange County, California. J. Environ. Manage. 76, 95-103.
  9. Ghinsberg, R.C., Dror, R., and Nitzan, Y. 1999. Isolation of Vibrio vulnificus from sea water and sand along the Dan region coast of the Mediterranean. Microbios 97, 7-17.
  10. Gobet, A., Boer, S.I., Huse, S.M., van Beusekom, J.E., Quince, C., Sogin, M.L., Boetius, A., and Ramette, A. 2012. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J. 6, 542-553. https://doi.org/10.1038/ismej.2011.132
  11. Goodwin, K.D., McNay, M., Cao, Y., Ebentier, D., Madison, M., and Griffith, J.F. 2012. A multi-beach study of Staphylococcus aureus, MRSA, and Enterococci in seawater and beach sand. Water Res. 46, 4195-4207. https://doi.org/10.1016/j.watres.2012.04.001
  12. Halliday, E. and Gast, R.J. 2011. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environ. Sci. Technol. 45, 370-379. https://doi.org/10.1021/es102747s
  13. Halliday, E., McLellan, S.L., Amaral-Zettler, L.A., Sogin, M.L., and Gast, R.J. 2014. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS One 9, e90815. https://doi.org/10.1371/journal.pone.0090815
  14. Heaney, C.D., Sams, E., Wing, S., Marshall, S., Brenner, K., Dufour, A.P., and Wade, T.J. 2009. Contact with beach sand among beachgoers and risk of illness. Am. J. Epidemiol. 170, 164-172. https://doi.org/10.1093/aje/kwp152
  15. Hernandez, R.J., Hernandez, Y., Jimenez, N.H., Piggot, A.M., Klaus, J.S., Feng, Z., Reniers, A., and Solo-Gabriele, H.M. 2014. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water. Water Res. 48, 579-591. https://doi.org/10.1016/j.watres.2013.10.020
  16. Khang, Y. 2013. Comparison of bacterial diversity in the water columns of Goseong deep seawaters. Kor. J. Microbiol. 49, 282-285. https://doi.org/10.7845/kjm.2013.3040
  17. Martins, J., Peixe, L., and Vasconcelos, V.M. 2011. Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP). Microb. Ecol. 62, 241-256.
  18. McLellan, S.L., Huse, S.M., Mueller-Spitz, S.R., Andreishcheva, E.N., and Sogin, M.L. 2010. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ. Microbiol. 12, 378-392. https://doi.org/10.1111/j.1462-2920.2009.02075.x
  19. Mika, K.B., Imamura, G., Chang, C., Conway, V., Fernandez, G., Griffith, J.F., Kampalath, R.A., Lee, C.M., Lin, C.C., Moreno, R., and et al. 2009. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources. J. Appl. Microbiol. 107, 72-84. https://doi.org/10.1111/j.1365-2672.2009.04197.x
  20. Mohammed, R.L., Echeverry, A., Stinson, C.M., Green, M., Bonilla, T.D., Hartz, A., McCorquodale, D.S., Rogerson, A., and Esiobu, N. 2012. Survival trends of Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium perfringens in a sandy South Florida beach. Mar. Pollut. Bull. 64, 1201-1209. https://doi.org/10.1016/j.marpolbul.2012.03.010
  21. Phillips, M.C., Feng, Z., Vogel, L.J., Reniers, A.J., Haus, B.K., Enns, A.A., Zhang, Y., Hernandez, D.B., and Solo-Gabriele, H.M. 2014. Microbial release from seeded beach sediments during wave conditions. Mar. Pollut. Bull. 79, 114-122. https://doi.org/10.1016/j.marpolbul.2013.12.029
  22. Russell, T.L., Sassoubre, L.M., Wang, D., Masuda, S., Chen, H., Soetjipto, C., Hassaballah, A., and Boehm, A.B. 2013. A coupled modeling and molecular biology approach to microbial source tracking at Cowell Beach, Santa Cruz, CA, United States. Environ. Sci. Technol. 47, 10231-10239.
  23. Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., Faria, N., Ferreira, F.C., Gargate, M.J., Julio, C., and et al. 2014. Routine screening of harmful microorganisms in beach sands: implications to public health. Sci. Total Environ. 472, 1062-1069. https://doi.org/10.1016/j.scitotenv.2013.11.091
  24. Santoro, A.E. and Boehm, A.B. 2007. Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides, and traditional indicators. Environ. Microbiol. 9, 2038-2049. https://doi.org/10.1111/j.1462-2920.2007.01319.x
  25. Shah, A.H., Abdelzaher, A.M., Phillips, M., Hernandez, R., Solo-Gabriele, H.M., Kish, J., Scorzetti, G., Fell, J.W., Diaz, M.R., Scott, T.M., and et al. 2011. Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site. J. Appl. Microbiol. 110, 1571-1583. https://doi.org/10.1111/j.1365-2672.2011.05013.x
  26. Smith, C.J. and Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6-20. https://doi.org/10.1111/j.1574-6941.2008.00629.x
  27. Takaki, Y., Shimamura, S., Nakagawa, S., Fukuhara, Y., Horikawa, H., Ankai, A., Harada, T., Hosoyama, A., Oguchi, A., Fukui, S., and et al. 2010. Bacterial lifestyle in a deep-sea hydrothermal vent chimney revealed by the genome sequence of the thermophilic bacterium Deferribacter desulfuricans SSM1. DNA Res. 17, 123-137. https://doi.org/10.1093/dnares/dsq005
  28. Whitman, R.L., Przybyla-Kelly, K., Shively, D.A., Nevers, M.B., and Byappanahalli, M.N. 2009. Hand-mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois. J. Water Health. 7, 623-629. https://doi.org/10.2166/wh.2009.115
  29. Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., and Nakamura, K. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53, 1155-1163. https://doi.org/10.1099/ijs.0.02520-0

Cited by

  1. Phylogenetic diversity of marine bacteria dependent on the port environment around the Ulleng Island vol.51, pp.3, 2015, https://doi.org/10.7845/kjm.2015.5040