DOI QR코드

DOI QR Code

Microbial Diversity in the Enrichment Cultures from the Fermented Beverage of Plant Extract Using Ribosomal RNA Sequence Analysis

라이보좀 RNA 염기서열 분석을 이용한 집식배양된 식물추출물발효음료의 미생물 다양성

  • Lee, Choung Kyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Baolo (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Kang, Young Min (Basic Herbal Medicine Reserch Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine Medicine (KIOM)) ;
  • Lee, Hee Yul (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Hwang, Chung Eun (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Ahn, Min Ju (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Seo, Weon Taek (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Kye Man (Department of Food Science, Gyeongnam National University of Science and Technology)
  • 이총규 (경남과학기술대학교 산림자원학과) ;
  • 김바오로 (경남과학기술대학교 식품과학부) ;
  • 강민영 (한국한의학연구원 한약연구본부 한약기초연구그룹) ;
  • 이희율 (경남과학기술대학교 식품과학부) ;
  • 황정은 (경남과학기술대학교 식품과학부) ;
  • 안민주 (경남과학기술대학교 식품과학부) ;
  • 서원택 (경남과학기술대학교 식품과학부) ;
  • 조계만 (경남과학기술대학교 식품과학부)
  • Received : 2014.05.27
  • Accepted : 2014.12.18
  • Published : 2014.12.31

Abstract

A beverage was produced by the fermentation of mixed extracts from the various fruits, vegetables, algae, and medical herbs. The physicochemical properties of the fermented beverage of plant extracts (FBPE) and microbial diversity were analyzed in cultures enriched from FBPE using 16S and 26S rRNA gene sequence analyses. The pH, acidity, $^{\circ}brix$, reducing sugar, and alcohol contents of the FBPE were determined to be the 3.48, 1.68%, 70.0, 1,026 g/L, and 3.5%, respectively. The most abundant free sugar and organic acid in the FBPE were glucose (567.83 g/L) and tartaric acid (93.68 mg/L), respectively. Lactobacillus homohiochii was the predominant species in all enriched culture samples: 100% of the species in 0B (0% sugar) and 40B (40% sugar) libraries and 95.6% of 20B library (20% sugar). Lactobacillus fructivorans was detected in the 20B library. The predominant species in the samples of enrichment cultures collected from FBPE with three different sugar concentrations were: Candida zeylanoides (45.2%) in the 0Y library (0% sugar), Candida lactis-condensi (35.7%) and C. zeylanoides (35.7%) in the 20Y library (20% sugar), and C. lactis-condensi (38.1%) in the 40Y library (40% sugar). This result may provide a useful frame of reference for further analyses of microbial population dynamics in FBPE.

Keywords

16S and 26S rRNA genes;fermented beverage of plant extract;lactic acid bacteria;microbial diversity;yeast

Acknowledgement

Supported by : Gyeongnam National University of Science and Technology

References

  1. Blandino, A., Al-Aseeri, M.E., Pandiella, S.S., Cantero, D., and Webb, C. 2003. Cereal-based fermented foods and beverages. Food Res. Int. 36, 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7
  2. Borneman, J. and Hartin, R.J. 2000. PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microbiol. 66, 4356-4360. https://doi.org/10.1128/AEM.66.10.4356-4360.2000
  3. Cho, K.M. and Seo, W.T. 2007. Bacterial diversity in a Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 16, 320 -324.
  4. Cho, K.M., Kwon, E.J., Kim, S.K., Kambiranda, D.M., Math, R.K., Lee, Y.H., Kim, J.H., Yun, H.D., and Kim, H. 2009. Fungal diversity in composting process of pig manure and mushroom cultural waste based on partial sequence of large subunit rRNA. J. Microbiol. Biotechnol. 19, 743-748.
  5. Cho, K.M., Lee, S.M., Math, R.K., Islam, S.M.A., Kambiranda, D.M., Kim, J.M., Yun, M.G., Cho, J.J., Kim, J.O., Lee, Y.H., and et al. 2008. Culture-independent analysis of microbioal succession during composting of swine slurry and mushroom cultural wastes. J. Microbiol. Biotechnol. 18, 1874-1883.
  6. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., and Comi, G. 2006. Dynamics and characterization of easts during natural fermentation of Italian sausages. FEMS Yeast Res. 6, 692-701. https://doi.org/10.1111/j.1567-1364.2006.00050.x
  7. Fadda, M.E., Viale, S., Deplano, M., Pisano, M.B., and Cosentino, S. 2010. Characterization of yeast population and molecular fingerprinting of Candida zeylanoides isolated from goat's milk collected in Sardinia. Food Microbiol. 136, 376-380. https://doi.org/10.1016/j.ijfoodmicro.2009.10.007
  8. Farrelly, V., Rainey, F.A., and Stackebrandt, E. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61, 2798-2801.
  9. Gadaga, T.H., Mutukumira, A.N., Narvhus, J.A., and Feresu, S.B. 1999. A review of traditional fermented foods and beverages of Zimbabwe. Food Microbiol. 53, 1-11. https://doi.org/10.1016/S0168-1605(99)00154-3
  10. Giraffa, G. and Neviani, E. 2001. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Food Microbiol. 67, 19-34. https://doi.org/10.1016/S0168-1605(01)00445-7
  11. Hernandez, A., Martin, A., Aranda, E., Perez-Nevado, F., and Gordoba, M.G. 2007. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 24, 346-351. https://doi.org/10.1016/j.fm.2006.07.022
  12. Kondo, T. and Ikeda, T. 2000. Rapid detection of substrate-oxidizing activity of hiochi bacteria using benzoquinone-mediated amperometric method. J. Biosci. Bioeng. 2, 217-219.
  13. Lamzira, Z., Asehraou, A., Brito, D., Oliveira, M., Faid, M., and Peres, C. 2005. Reducing the bloater spoilage during lactic fermentation of Moroccan green olives. Food Technol. Biotechnol. 43, 373- 377.
  14. Lee, H.J. and Kim, J. 2000. Multiplex PCR-based detection and identification of Leuconstoc species. FEMS Microbiol. Lett. 193, 243-247. https://doi.org/10.1111/j.1574-6968.2000.tb09431.x
  15. Li, S.S., Cheng, C., Li, Z., Chen, J.Y., Yan, B., Han, B.Z., and Reeves, M. 2010. Yeast species associated with wine grapes in China. Food Microbiol. 138, 85-90. https://doi.org/10.1016/j.ijfoodmicro.2010.01.009
  16. Maidak, B.L., Cole, J.R., Lilburn, T.G. Jr. Parker, C.T., Saxman, P.R., and Stredwick, J.M. 2000. The RDP (Ribosomal Data-base Project) continues. Nucleic Acids Res. 28, 173-174. https://doi.org/10.1093/nar/28.1.173
  17. Martorell, P., Stratford, M., Steels, H., Fernandez-Espinar, M.T., and Querol, A. 2007. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Food Microbiol. 114, 234-242. https://doi.org/10.1016/j.ijfoodmicro.2006.09.014
  18. McGinnis, S. and Madden, T.L. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, 20-25.
  19. Miller, G.L. 1959 Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  20. Nisiotou, A.A., Chorianopoulos, N., Nychas, G.J.E., and Panagou, E.Z. 2009. Yeast heterogeneity during spontaneous fermentation of black conservolea olives in different brine solutions. J. Appl. Microbiol. 108, 396-405.
  21. Ohbuchi, K., Hasegawa, K., Hamachi, M., Ozeki, K., and Kumagai, C. 2001. Isolation of a new lytic enzyme for hiochi bacteria and other lactic acid bacteria. J. Biosci. Bioeng. 5, 487-492.
  22. Okada, H., Fukushi, E., Yamamori, A., Kawazoe, N., Onodera, S., Kawabata, J., and Shiomi, N. 2006. Structural analysis of a novel saccharide isolated from fermented beverage of plant extract. Carbohydr. Res. 341, 925-929. https://doi.org/10.1016/j.carres.2006.02.009
  23. Okada, H., Fukushi, E., Yamamori, A., Kawazoe, N., Onodera, S., Kawabata, J., and Shiomi, N. 2009. Structural analysis of three novel trisaccharides isolated from the fermented beverage of plant extract. Chem. Cent. J. 3, 1-8. https://doi.org/10.1186/1752-153X-3-1
  24. Okada, H., Fukushi, E., Yamamori, A., Kawazoe, N., Onodera, S., Kawabata, J., and Shiomi, N. 2010. Novel fructopyranose oligosaccharides isolated from fermented beverage of plant extract. Carbohydr. Res. 345, 414-418. https://doi.org/10.1016/j.carres.2009.12.003
  25. Pina, C., Goncalves, P., Prista, C., and Loureiro-Dias, M.C. 2004. Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150, 2429-2433. https://doi.org/10.1099/mic.0.26979-0
  26. Romano, A., Casaregola, S., Torre, P., and Gaillardin, C. 1996. Use of RAPD and mitochondrial DNA RFLP for typing of Candida zeylanoides and Debaryomyces hansenii yeast strains isolated from cheese, system. J. Appl. Microbiol. 19, 255-264.
  27. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  28. Sambrook, J. and Russell, D.W. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, NewYork, USA.
  29. So, M.H. and Cho, S.H. 1999. Screening of high antibacterial lactic acid bacteria for the preparation of dongchimi-juice for naengmyon. Ecol. Food Nutr. 1, 69-76.
  30. Solieri, L. and Giudici, P. 2008. Yeasts associated to traditional balsamic vinegar: ecological and technological features. Food Microbiol. 125, 36-45. https://doi.org/10.1016/j.ijfoodmicro.2007.06.022
  31. Solieri, L., Landi, S., De Vero, L., and Giudici, P. 2006. Molecular assessment of indigenous yeast population from traditional balsamic vinegar. J. Appl. Microbiol. 101, 63-71. https://doi.org/10.1111/j.1365-2672.2006.02906.x
  32. Soni, S.K. and Sandhu, D.K. 1990. Indian fermented foods: micro-biological and biochemical aspects. Indian J. Microbiol. 30, 135-157.
  33. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUST-ALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Tofalo, R., Chaves-Lopez, C., Di Fabio, F., Schirone, M., Felis, G.E., Torriani, S., Paparella, A., and Suzzi, G. 2009. Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. Food Microbiol. 130, 179-187. https://doi.org/10.1016/j.ijfoodmicro.2009.01.024
  35. Tofalo, R., Schirone, M., Giorgia, P., Suzzi, G., and Corsetti, A. 2012. Development and application of a real-time PCR-based assay to enumerate total yeasts and Pichia anomala, Pichia guillermondii and Pichia kluyveri in fermented table olives. Food Con. 23, 356- 362. https://doi.org/10.1016/j.foodcont.2011.07.032
  36. Turantas, F., Goksungur, Y., Dincer, H.A., Unluturk, A., Guvenc, U., and Zorlu, N. 1999. Effect of potassium sorbate and sodium benzoate on microbial population and fermentation of black olives. J. Sci. Food Agric. 79, 1197-1202. https://doi.org/10.1002/(SICI)1097-0010(19990701)79:9<1197::AID-JSFA349>3.0.CO;2-A
  37. Wada, Y. and Mizoguchi, H. 2007. New insertion sequence in Lactobacillus fructivorans strains isolated from spoiled sake. J. Biosci. Bioeng. 5, 399-405.
  38. Wintzingerode, V.F., Gobel, U.B., and Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rDNA analysis. FEMS Microbiol. Rev. 21, 213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  39. Zhang, J., Liu, W., Sun, Z., Bao, Q., Wang, F., Yu, J., Chen, W., and Zhang, H. 2011. Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western region in inner mongolia of china. Food Con. 22, 767-774. https://doi.org/10.1016/j.foodcont.2010.11.012

Cited by

  1. Recent research process of fermented plant extract: A review vol.65, 2017, https://doi.org/10.1016/j.tifs.2017.04.006
  2. Changes in yeast diversity and volatile flavor compounds during fermentation of mugwort sugar extracts vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.863