Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes

고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과

  • Kim, Gyeom-Heon (Department of Animal Science and Technology, Konkuk University) ;
  • Yi, Kwon-Jung (Department of Animal Science and Technology, Konkuk University) ;
  • Lee, Ah-Ran (Department of Animal Science and Technology, Konkuk University) ;
  • Jang, In-Hwan (R&D center, Bigbiogen Co., Ltd.) ;
  • Song, In-Geun (R&D center, Bigbiogen Co., Ltd.) ;
  • Kim, Dong-Woon (National Institute of Animal Science, RDA) ;
  • Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
  • Received : 2014.07.25
  • Accepted : 2014.10.14
  • Published : 2014.12.31


The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.


feed bin;high temperature;probiotics;viability


Supported by : 농림축산식품부


  1. Beharka, A.A. and Nagaraja, T.G. 1998. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. J. Dairy Sci. 81, 1591-1598.
  2. Bhasme, P.C., Kurjogi, M.M., Sanakal, R.D., Kaliwal, R.B., and Kaliwal, B.B. 2013. In silico characterization of putative drug targets in Staphylococcus saprophyticus, causing bovine mastitis. Bioinformation 9, 339-344.
  3. Buenrostro, J.L. and Kratzer, F.H. 1983. Effect of Lactobacillus inoculation and antibiotic feeding of chickens on availability of dietary biotin. Poult. Sci. 62, 2022-2029.
  4. Coutinho, T.A. and Venter, S.N. 2009. Pantoea ananatis: an unconventional plant pathogen. Mol. Plant Pathol. 10, 325-335.
  5. Crump, J.A., Griffin, P.M., and Angulo, F.J. 2002. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin. Infect. Dis. 35, 859-865.
  6. Cui, C., Shen, C.J., Jia, G., and Wang, K.N. 2013. Effect of dietary Bacillus subtilis on proportion of bacteroidetes and firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12, 1766-1776.
  7. Davis, M.E., Parrott, T., Brown, D.C., De Rodas, B.Z., Johnson, Z.B., Maxwell, C.V., and Rehberger, T. 2008. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. Anim. Sci. 86, 1459-1467.
  8. De-Bashan, L.E., Hernandez, J.P., Bashan, Y., and Maier, R.M. 2010. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exp. Bot. 69, 343-352.
  9. Desnoyers, M., Giger-Reverdin, S., Bertin, G., Duvaux-Ponter, C., and Sauvant, D. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92, 1620-1632.
  10. Folic, M., Jankovic, S., Ruzic-Zecevic, D., Pajevic, V., Rosic, N., and Nikolic, P. 2010. Synovitis and periarticular bursitis of the coxofemoral joint caused by Kocuria Kristinae: A case report. Acta. Fac. Med. Naiss. 27, 51-54.
  11. Jang, Y.D., Oh, H.K., Piao, L.G., Choi, H.B., Yun, J.H., and Kim, Y.Y. 2009. Evaluation of probiotics as an alternative to antibiotic on growth performance, nutrient digestibility, occurrence of diarrhea and immune response in weaning pigs. J. Anim. Sci. Tech.(Kor.) 51, 25-32.
  12. Kim, Y.S., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012. Isolation of biogenic amines-degrading strains of Bacillus subtilis and Bacillus amyloliquefaciens from traditionally fermented soybean products. Kor. J. Microbiol. 48, 220-224.
  13. Kim, S.I., Kim, I.C., and Chang, H.C. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Korean Soc. Food Sci. Nutr. 28, 526-533.
  14. Kim, D.W., Kim, J.H., Kang, G.H., Kang, H.K., Lee, S.J., Lee, W.J., and Kim, S.H. 2008a. Study on intestinal viability and optimum feeding method of Lactobacillus in broiler chickens. J. Anim. Sci. Tech.(Kor.) 50, 807-818.
  15. Kim, S.H., Kim, D.W., Park, S.Y., Kim, J.H., Kang, G.H., Kang, H.K., Yu, D.J., Na, J.C., and Lee, S.J. 2008b. Effect of dietary Lactobacillus on growth performance, intestinal microflora, development of ileal villi, and intestinal mucosa in broiler chickens. J. Anim. Sci. Tech.(Kor.) 50, 667-676.
  16. Knap, I., Kehlet, A.B., Bennedsin, M., Mathis, G.F., Hofacre, C.L., Lumpkins, B.S., Jensen, M.M., Raun, M., and Lay, A. 2011. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult. Sci. 90, 1690-1694.
  17. Krehbiel, C.R., Rust, S.R., Zhang, G., and Gilliland, S.E. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81(E.Suppl.2), E120-132.
  18. Lee, E.J., Kim, J.S., Oh, S.W., and Kim, Y.J. 2012. The resistance of Bacillus subtilis in Makgeolli to hydrostatic pressure. Korean J. Food Sci. Technol. 44, 312-316.
  19. Lessard, M., Dupuis, M., Gagnon, N., Nadeau, E., Matte, J.J., Goulet, J., and Fairbrother, J.M. 2009. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 87, 922-934.
  20. Ma, E.S., Wong, C.L., Lai, K.T., Chan, E.C., Yam, W.C., and Chan, A.C. 2005. Kocuria kristinae infection associated with acute cholecystitis. BMC. Infect. Dis. 5, 60. Marimuthu, K. 2013. Isolation and characterization of Staphylococcus hominis JX961712 from oil contaminated soil. J. Pharm. Res. 7, 252-256.
  21. Park, M.J., Kim, H.B., An, D.S., Yang, H.C., Oh, S.T., Chung, H.J., and Yang, D.C. 2007. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 57, 146-150.
  22. Piao, X.S., Han, I.K., Kim, J.H., Cho, W.T., Kim, Y.H., and Liang, C. 1999. Effects of kemzyme, phytase and yeast supplementation on the growth performance and pollution reduction of broiler chicks. Asian J. Anim. Sci. 12, 36-41.
  23. Raz, R., Colodner, R., and Kunin, C.M. 2005. Who are you- Staphylococcus saprophyticus?. Clin. Infect. Dis. 40, 896-898.
  24. Ross, G.R., Gusils, C., Oliszewski, R., De Holgado, S.C., and Gonzalez, S.N. 2010. Effects of probiotic dministration in swine. J. Biosci. Bioeng. 109, 545-549.
  25. Salarmoini, M. and Fooladi, M.H. 2011. Efficacy of Lactobacillus acidophilus as probiotic to improve broiler chicks performance. J. Agr. Sci. Tech. 13, 165-172.
  26. Shon, M.Y., Seo, K.I., Park, S.K., Cho, Y.S., and Sung, N.J. 2001. Some biological activities and isoflavone content of Chungkugjang prepared with black beans and Bacillus strains. J. Korean Soc. Food Sci. Nutr. 30, 662-667.
  27. Swyers, K.L., Burk, A.O., Hartsock, T.G., Ungerfeld, E.M., and Shelton, J.L. 2008. Effects of direct-fed microbial supplementation on digestibility and fermentation end-products in horses fed low- and high-starch concentrates. J. Anim. Sci. 86, 2596-2608.
  28. Thomas, P. 2004. Isolation of Bacillus pumilus from in vitro grapes as a long‐term alcohol‐surviving and rhizogenesis inducing covert endophyte. J. Appl. Microbiol. 97, 114-123.
  29. Vaseeharan, B. and Ramasamy, P. 2003. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 36, 83-87.
  30. Wu, W.J. and Ahn, B.Y. 2011. Isolation and identification of Bacillus amyloliquefaciens BY01 with high productivity of menaquinone for Cheonggukjang production. J. Korean Soc. Appl. Biol. Chem. 54, 783-789.
  31. Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., and Vidaver, A.K. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68, 2198-2208.
  32. Zokaeifar, H., Balcazar, J.L., Saad, C.R., Kamarudin, M.S., Sijam, K., Arshad, A., and Nejat, N. 2012. Effect of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683-689.