Characterization of Biogenic Amine-reducing Pediococcus pentosaceus Isolated from Traditionally Fermented Soybean Products

전통 장류에서 분리한 Biogenic Amines 저감 유산균 Pediococcus pentosaceus의 분리 및 특성

  • Oh, HyeonHwa (Department of Biological Sciences, Chonbuk National University) ;
  • Ryu, MyeongSeon (Department of Biological Sciences, Chonbuk National University) ;
  • Heo, Jun (Department of Biological Sciences, Chonbuk National University) ;
  • Jeon, SaeBom (Department of Biological Sciences, Chonbuk National University) ;
  • Kim, Young Sang (Ministry of Food and Drug Safety (MFDS)) ;
  • Jeong, DoYoun (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
  • 오현화 (전북대학교 자연과학대학 생물학과) ;
  • 류명선 (전북대학교 자연과학대학 생물학과) ;
  • 허준 (전북대학교 자연과학대학 생물학과) ;
  • 전새봄 (전북대학교 자연과학대학 생물학과) ;
  • 김용상 (식품의약품안전처) ;
  • 정도연 (발효미생물산업진흥원) ;
  • 엄태붕 (전북대학교 자연과학대학 생물학과)
  • Received : 2014.08.29
  • Accepted : 2014.09.24
  • Published : 2014.12.31


Two bacterial strains, named as LE17 and LE22, were isolated from traditionally fermented soybean products in order to select lactic acid bacteria for the reduction of biogenic amines and harmful bacteria. Both strains were identified as Pediococcus pentosaceus by 16S rRNA sequence analysis and additional biochemical tests. The strain LE17 reduced the amines by 13.7% for histamine and by 25.9% for tyramine, when it grew in minimal synthetic media containing 0.1% (w/v) histamine and 0.1% tyramine at $30^{\circ}C$ for 48 h, while the strain LE22 reduced the amines by 23.7% for histamine and by 15.7% for tyramine. Both strains also had broad inhibition spectra against pathogens. Considering their properties, they could be used as starters for industrial soybean fermentation.


Pediococcus;anti-bacterial agents;biogenic amines;lactic acid bacteria;soybean products


Supported by : 농림수산식품부


  1. BIAMFOOD. 2008. Controlling biogenic amines in traditional food fermentations in regional Europe (Project Reference no. 211441), EU's 7th Framework Program for Research, EU.
  2. Bover-Cid, S. and Holzapfel, W.H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53, 33-41.
  3. Callejon, S., Sendra, R., Ferrer, S., and Pardo, I. 2014. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl. Microbiol. Biotechnol. 98, 185-198.
  4. Capozzi, V., Russo, P., Ladero, V., Fernández, M., Fiocco, D., Alvarez, M.A., Grieco, F., and Spano, G. 2012. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front. Microbiol. 3, 122.
  5. Cho, T.Y., Han, G.H., Bahn, K.N., Son, Y.W., Jang, M.R., Lee, C.H., Kim, S.H., Kim, D.B., and Kim, S.B. 2006. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol. 38, 730-737.
  6. Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud-Funel, A., Lucas, P., and Coton, E. 2010. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. 27, 1078-1085.
  7. Dobrogosz, W.J. and DeMoss, R.D. 1963. Pentose utilization by Pediococcus pentosaceus. J. Bacteriol. 85, 1356-1364.
  8. FAO/WHO (Food and Agriculture Organization of the United Nations/ World Health Organization). 2013. Public health risks of histamine and other biogenic amines from fish and fishery products. Meeting Report. Rome, Italy.
  9. Jeong, D.W., Kim, H.R., Jung, G., Han, S., Kim, C.T., and Lee, J.H. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24, 648-660.
  10. Karovicova, J. and Kohajdova, Z. 2005. Biogenic amines in food. Chem. Pap. 59, 70-79.
  11. Kim, Y.S., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012a. Isolation of biogenic amines-degrading strains of Bacillus subtilis and Bacillus amyloliquefaciens from traditionally fermented soybean products. Kor. J. Microbiol. 48, 220-224.
  12. Kim, Y.S., Jeong, D.Y., Hwang, Y.T., and Uhm, T.B. 2011a. Bacterial community profiling during the manufacturing process of traditional soybean paste by pyrosequencing method. Kor. J. Microbiol. 47, 275-280.
  13. Kim, Y.S., Jeong, J.H., Cho, S.H., Jeong, D.Y., and Uhm, T.B. 2012b. Antimicrobial and biogenic amine-degrading activity of Bacillus licheniformins SCK B11 isolated from traditionally fermented red pepper paste. Kor. J. Microbiol. 48, 163-170.
  14. Kim, Y.S., Kim, M.C., Kwon, S.W., Kim, S.J., Park, I.C., Ka, J.O., and Weon, H.Y. 2011b. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49, 340-348.
  15. Kingcha, Y., Tosukhowong, A., Zendo, T., Roytrakul, S., Luxananil, P., Chareonpornsook, K., Valyasevi, R., Sonomoto, K., and Visessanguan, W. 2012. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control. 25, 190-196.
  16. Marchler-Bauer, A. and Bryant, S.H. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327-W331.
  17. Nakajo, K., Komori, R., Ishikawa, S., Ueno, T., Suzuki, Y., Iwami, Y., and Takahashi, N. 2006. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis. Oral Microbiol. Immunol. 21, 283-288.
  18. Papagianni, M. and Anastasiadou, S. 2009. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact. 8, 3.
  19. PSJ (The pharmaceutical society of Japan). 2005. Methods of analysis in health science, pp. 180-182. Kanehara & Co. Ltd., Tokyo, Japan.
  20. Shukla, R. and Goyal, A. 2014. Probiotic potential of Pediococcus pentosaceus CRAG3: a new isolate from fermented cucumber. Probiotics Antimicrob. Proteins 6, 11-21.
  21. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., and Higgins, D.G. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.
  22. Smela, D., Pechova, P., Komprda, T., Klejdus, B., and Kuban, V. 2003. Liquid chromatographic determination of biogenic amines in a meat product during fermentation and long-term storage. Czech J. Food Sci. 21, 167-175.
  23. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
  24. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 28, 2731-2739.
  25. Tanasupawat, S., Okada, S., Kozaki, M., and Komagata, K. 1993. Characterization of Pediococcus pentosaceus and Pediococcus acidilactici strains and replacement of the type strain of P. acidilactici with the proposed neotype DSM 20284 request for an opinion. Int. J. Syst. Bacteriol. 43, 860-863.
  26. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673- 4680.
  27. Warthesen, J., Scanlan, R., Bills, D., and Libbey, L. 1975. Formation of heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food chem. 23, 898- 902.
  28. Zhang, Z., Schwarz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214.