DOI QR코드

DOI QR Code

The Effect of Microalgal Growth on Nutrient Sources Using Microalgal Small Scale Raceway Pond (SSRP) for Biodiesel Production

바이오디젤 생산을 위한 미세조류 옥외배양 시스템의 영양원에 따른 미세조류 성장 특성 비교

  • Kim, Dong-Ho (Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Byung-Hyuk (Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Jong-Eun (Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Zion (Green Chemistry and Environmental Biotechnology, University of Science and Technology (UST)) ;
  • Kim, Hee-Sik (Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 김동호 (한국생명공학연구원 지속가능자원연구센터) ;
  • 김병혁 (한국생명공학연구원 지속가능자원연구센터) ;
  • 최종은 (한국생명공학연구원 지속가능자원연구센터) ;
  • 강시온 (한국과학기술원 생명화학공학과) ;
  • 김희식 (한국생명공학연구원 지속가능자원연구센터)
  • Received : 2014.11.10
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

The world is in need of sustainable and eco-friendly energy sources such as microalgal biodiesel due to global warming and fossil fuel shortages. In this study, we compared the effectiveness of liquid fertilizer produced from swine manure and agriculture grade solid fertilizers as nutrient sources for microalgal biomass production. Mixed culture (Chlorella spp., Scenedesmus spp., Stigeoclonium spp.; CSS) was cultivated for 28 days in Small Scale Raceway Pond (SSRP) using various nutrient sources (swine manure liquid fertilizer, agricultural solid fertilizer, and mixture of these two fertilizers). Biomass and lipid productivity of fertilizer mixture were the highest at 0.8 g/L and 5.8 mg/L/day, respectively. These results indicate that the fertilizer mixture can provide microalgae necessary nutrient sources for stable biodiesel production and biomass growth. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

Keywords

biodiesel;biomass;microalgae;open culture system;swine manure

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Aaronson, S. and Dubinsky, Z. 1982. Mass production of microalgae, pp. 42-46. In Mislin, H. and Bachofen, R. (eds.), New trends in research and utilization of solar energy through biological systems, Birkhauser Basel.
  2. APHA. 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA.
  3. Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/o59-099
  4. Cain, J., Paschal, D., and Hayden, C. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9, 9-16. https://doi.org/10.1007/BF01055495
  5. Canakci, M. and van Gerpen, J. 2001. Biodiesel production from oils and fats with high free fatty acids. Transactions ASAE 44, 1429-1436.
  6. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  7. Choi, J.E., Kim, B.H., Kang, Z., Oh, H.M., and Kim, H.S. 2014. Biodiesel production and nutrients removal from piggery manure using microalgal small scale raceway pond (SSRP). Korean J. Environ. Biol. 32, 26-34. https://doi.org/10.11626/KJEB.2014.32.1.026
  8. Craggs, R.J., McAuley, P.J., and Smith, V.J. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31, 1701-1707. https://doi.org/10.1016/S0043-1354(96)00093-0
  9. Garber, K. 2009. Top 5 issues at the copenhagen climate conference. US News.
  10. Gitelson, A. 1992. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 13, 3367-3373. https://doi.org/10.1080/01431169208904125
  11. Gonzalez, L.E., Canizares, R.O., and Baena, S. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60, 259-262. https://doi.org/10.1016/S0960-8524(97)00029-1
  12. Halim, R., Gladman, B., Danquah, M.K., and Webley, P.A. 2011. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 102, 178-185. https://doi.org/10.1016/j.biortech.2010.06.136
  13. He, H., Wang, T., and Zhu, S. 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel. 86, 442-447. https://doi.org/10.1016/j.fuel.2006.07.035
  14. Jeong, M.L., Gillis, J.M., and Hwang, J.Y. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24, 4.
  15. Kang, Z., Kim, B.H., Oh, H.M., and Kim, H.S. 2013. Production of biodiesel and nutrient removal of municipal wastewater using a small scale raceway pond. Korean J. Microbiol. Biotechnol. 41, 207-214. https://doi.org/10.4014/kjmb.1301.01001
  16. Kang, Z., Kim, B.H., Shin, S.Y., Oh, H.M., and Kim, H.S. 2012. Municipal wastewater treatment and microbial diversity analysis of microalgal mini raceway open pond. Korean J. Microbiol. 48, 192-199. https://doi.org/10.7845/kjm.2012.036
  17. Knothe, G. 2011. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Roy. Soc. Chem. 13, 3048-3065.
  18. Kumar Tiwari, A., Kumar, A., and Raheman, H. 2007. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenerg. 31, 569-575. https://doi.org/10.1016/j.biombioe.2007.03.003
  19. Lam, M.K. and Lee, K.T. 2012. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl. Energy 94, 303-308. https://doi.org/10.1016/j.apenergy.2012.01.075
  20. Lee, E.K. 2012. Change of energy related legislation system in Korea and USA. Korean Environ. Law Assoc. 34, 117-157.
  21. Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., and Oh, H.M. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101, S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  22. Lee, J., Cho, D.H., Ramanan, R., Kim, B.H., Oh, H.M., and Kim, H.S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131, 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
  23. Li, Y., Horsman, M., Wang, B., Wu, N., and Lan, C. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629-636. https://doi.org/10.1007/s00253-008-1681-1
  24. Mandal, S. and Mallick, N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291. https://doi.org/10.1007/s00253-009-1935-6
  25. Oh, S.H., Han, J.G., Kim, N.Y., Cho, J.S., Yim, T.B., Lee, S.Y., and Lee, H.Y. 2009. Cell growth and lipid production from fed-batch cultivation of Chlorella minutissima according to culture conditions. KSBB J. 24, 377-382.
  26. Pittman, J.K., Dean, A.P., and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102, 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  27. Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M.R. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. https://doi.org/10.1002/bit.22033
  28. Scragg, A.H., Morrison, J., and Shales, S.W. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33, 884-889. https://doi.org/10.1016/j.enzmictec.2003.01.001
  29. Shen, Y., Yuan, W., Pei, Z.J., Wu, Q., and Mao, E. 2009. Microalgae mass production methods. Transactions ASABE 52, 1275-1287. https://doi.org/10.13031/2013.27771
  30. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. https://doi.org/10.1263/jbb.101.87
  31. Syrett, P.J. and Morris, I. 1963. The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim. Biophys. Acta 67, 566-575. https://doi.org/10.1016/0926-6569(63)90277-3
  32. Takagi, M., Karseno, and Yoshida, T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101, 223-226. https://doi.org/10.1263/jbb.101.223
  33. Weis, J.J., Madrigal, D.S., and Cardinale, B.J. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: A microcosm experiment. PLoS One 3, e2825. https://doi.org/10.1371/journal.pone.0002825
  34. Wilkie, A.C. and Mulbry, W.W. 2002. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 84, 81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
  35. Xue, J., Grift, T.E., and Hansen, A.C. 2011. Effect of biodiesel on engine performances and emissions. Renewable Sustainable Energy Reviews 15, 1098-1116. https://doi.org/10.1016/j.rser.2010.11.016
  36. Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., and Yang, J.W. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69, 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M