DOI QR코드

DOI QR Code

Comparison Analysis of Swine Gut Microbiota between Landrace and Yorkshire at Various Growth Stages

두 돼지 종의 다양한 성장단계에 따른 장내미생물 비교분석

  • Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • Received : 2014.11.11
  • Accepted : 2014.11.24
  • Published : 2014.12.31

Abstract

In this study, we conducted a next generation sequencing based microbial community analysis to investigate gut microbiota of the two commercially most available swine breeds, Yorkshire and Landrace. Bacterial 16S rRNA gene was amplified from fecal DNA using universal primer sets designed for V4 regions. Our comparison analysis of the gut microbiota of the two breeds suggested that their gut microbiota changed depending on the growth stages, while the difference between the two breeds was insignificant. However, there was a limited number of genera, the abundance of which was found to be different between the breeds. Those included the genus Xylanibacter in the Yorkshire samples, which was previously reported as a fiber digesting bacteria, likely increasing energy harvesting capacity of swine. In addition, others included opportunistic pathogens mostly found in the Yorkshire samples while the Landrace samples had significantly more prevalent Clostridium_IV species that were known to play a key role in systemic immunity of hosts. While microbial community shifts was found to be associated with growth stages, the difference between the two breeds seemed to be insignificant. However, there were several bacterial genera showing differential abundance, which may affect growth of hosts.

Keywords

growth promoter;gut microbiota;swine

Acknowledgement

Supported by : Jeju National University

References

  1. Alvarez-Ordonez, A., Martinez-Lobo, F.J., Arguello, H., Carvajal, A., and Rubio, P. 2013. Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. Int. J. Environ. Res. Public Health 10, 1927-1947. https://doi.org/10.3390/ijerph10051927
  2. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., and et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621-1624. https://doi.org/10.1038/ismej.2012.8
  3. Casewell, M., Friis, C., Marco, E., McMullin, P., and Phillips, I. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159-161. https://doi.org/10.1093/jac/dkg313
  4. Castillo, M., Martin-Orue, S.M., Roca, M., Manzanilla, E.G., Badiola, I., Perez, J.F., and Gasa, J. 2006. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci. 84, 2725-2734. https://doi.org/10.2527/jas.2004-556
  5. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and Tiedje, J.M. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-145. https://doi.org/10.1093/nar/gkn879
  6. De Smet, S., De Zutter, L., Debruyne, L., Vangroenweghe, F., Vandamme, P., and Houf, K. 2011. Arcobacter population dynamics in pigs on farrow-to-finish farms. Appl. Environ. Microbiol. 77, 1732 -1738. https://doi.org/10.1128/AEM.02409-10
  7. Degnan, P.H. and Ochman, H. 2012. Illumina-based analysis of microbial community diversity. ISME J. 6, 183-194. https://doi.org/10.1038/ismej.2011.74
  8. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  9. Foster, E.K. 2003. METASTATS: behavioral science statistics for Microsoft Windows and the HP49G programmable calculator. Behav. Res. Methods Instrum. Comput. 35, 325-328. https://doi.org/10.3758/BF03202560
  10. Hauben, L., Vauterin, L., Moore, E.R., Hoste, B., and Swings, J. 1999. Genomic diversity of the genus Stenotrophomonas. Int. J. Syst. Bacteriol. 49, 1749-1760. https://doi.org/10.1099/00207713-49-4-1749
  11. Jarosz, L.S., Gradzki, Z., and Kalinowski, M. 2014. Trueperella pyogenes infections in swine: clinical course and pathology. Pol. J. Vet. Sci. 17, 395-404.
  12. Kamada, N., Kim, Y.G., Sham, H.P., Vallance, B.A., Puente, J.L., Martens, E.C., and Nunez, G. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325-1329. https://doi.org/10.1126/science.1222195
  13. Konstantinov, S.R., Smidt, H., Akkermans, A.D.L., Casini, L., Trevisi, P., Mazzoni, M., De Filippi, S., Bosi, P., and de Vos, W.M. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66, 599-607. https://doi.org/10.1111/j.1574-6941.2008.00517.x
  14. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120. https://doi.org/10.1128/AEM.01043-13
  15. Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
  16. Lowenthal, J.W., Lambrecht, B., van den Berg, T.P., Andrew, M.E., Strom, A.D., and Bean, A.G. 2000. Avian cytokines - the natural approach to therapeutics. Dev. Comp. Immunol. 24, 355-365. https://doi.org/10.1016/S0145-305X(99)00083-X
  17. Oliver, W.T. and Wells, J.E. 2013. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J. Anim. Sci. 91, 3129-3136. https://doi.org/10.2527/jas.2012-5782
  18. Pang, X., Hua, X., Yang, Q., Ding, D., Che, C., Cui, L., Jia, W., Bucheli, P., and Zhao, L. 2007. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 1, 156-162. https://doi.org/10.1038/ismej.2007.23
  19. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219
  20. Santacruz, A., Collado, M.C., Garcia-Valdes, L., Segura, M.T., Martin-Lagos, J.A., Anjos, T., Marti-Romero, M., Lopez, R.M., Florido, J., Campoy, C., and Sanz, Y. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83-92. https://doi.org/10.1017/S0007114510000176
  21. Sarrabayrouse, G., Bossard, C., Chauvin, J.M., Jarry, A., Meurette, G., Quevrain, E., Bridonneau, C., Preisser, L., Asehnoune, K., Labarriere, N., and et al. 2014. CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 12, e1001833. https://doi.org/10.1371/journal.pbio.1001833
  22. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  23. Thacker, P.A. 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol. 4, 35. https://doi.org/10.1186/2049-1891-4-35
  24. Tremaroli, V. and Backhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242-249. https://doi.org/10.1038/nature11552
  25. van der Velden, L.B., de Jong, A.S., de Jong, H., de Gier, R.P., and Rentenaar, R.J. 2012. First report of a Wautersiella falsenii isolated from the urine of an infant with pyelonephritis. Diagn. Microbiol. Infect. Dis. 74, 404-405. https://doi.org/10.1016/j.diagmicrobio.2012.08.008
  26. Vaz-Moreira, I., Nobre, M.F., Nunes, O.C., and Manaia, C.M. 2007. Pseudosphingobacterium domesticum gen. nov., sp. nov., isolated from home-made compost. Int. J. Syst. Evol. Microbiol. 57, 1535- 1538. https://doi.org/10.1099/ijs.0.64950-0
  27. Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614-620. https://doi.org/10.1093/bioinformatics/btt593
  28. Zhou, H.W., Li, D.F., Tam, N.F., Jiang, X.T., Zhang, H., Sheng, H.F., Qin, J., Liu, X., and Zou, F. 2011. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741-749. https://doi.org/10.1038/ismej.2010.160