DOI QR코드

DOI QR Code

PRACTICAL OBSERVER FOR IMPULSIVE SYSTEMS

  • Ellouze, Imen
  • Received : 2013.01.05
  • Published : 2014.01.01

Abstract

In this paper, we deal with the problem of practical observer design and the practical stabilization for a class of perturbed impulsive systems. We show that, under the classical conditions of uniform complete controllability and uniform complete observability of the nominal system without impulsive effects, it is possible to design an observer controller for a class of perturbed linear impulsive system when the origin is not an equilibrium point.

Keywords

impulsive perturbed systems;practical observer design;practical stabilization;separation principle

References

  1. B. Benhamed, I. Ellouze and M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math. 8 (2011), no. 4, 603-616. https://doi.org/10.1007/s00009-010-0083-7
  2. I. Ellouze and M. A. Hammami, On the practical stability of impulsive control systems with multiple time delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), 341-356.
  3. A. M. Enrique and A. L. Douglas, State estimation for linear impulsive systems, In Proc. Amer. Control Conf. (2009), 1183-1188.
  4. J.-P. Gauthier and I. Kupka, Deterministic Observation Theory and Applications, Cambridge Math. Lib., 2000.
  5. E. Kruger-Thiemer, Formal theory of drug dosage regiments, I. J. Theoret. Biol. 13 (1966), 212-235. https://doi.org/10.1016/0022-5193(66)90018-X
  6. V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
  7. X. Liu, Stability of impulsive control systems with time delay, Math. Comput. Modelling 39 (2004), no. 4-5, 511-519. https://doi.org/10.1016/S0895-7177(04)90522-5
  8. P. Naghshtabrizi, I. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems Control Lett. 57 (2008), no. 5, 378-385. https://doi.org/10.1016/j.sysconle.2007.10.009
  9. F. L. Pereira and G. N. Silva, Stability for impulsive control systems, Dyn. Syst. 17 (2002), no. 4, 421-434. https://doi.org/10.1080/1468936031000075151
  10. S. Ruiqing and C. Lansun, An impulsive predator-prey model with disease in the prey for integrated pest management, Commun. Nonlinear Sci. Numer. Simul. 15 (2009), no. 2, 421-429.
  11. S. Ruiqing, J. Xiaowu and C. Lansun, The effect of impulsive vaccination on an sir epidemic model, Appl. Math. Comput. 212 (2009), no. 2, 305-311. https://doi.org/10.1016/j.amc.2009.02.017
  12. G. Xie and L. Wang, Controllability and observability of a class of linear impulsive systems, J. Math. Anal. Appl. 304 (2005), no. 1, 336-355. https://doi.org/10.1016/j.jmaa.2004.09.028

Cited by

  1. Stability of impulsive systems depending on a parameter vol.39, pp.10, 2016, https://doi.org/10.1002/mma.3717