A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu (Department of Animal Science, Chungbuk National University) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • Received : 2014.06.29
  • Accepted : 2014.10.26
  • Published : 2014.11.30


Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.


Korean native pig;Genome-wide;SNP;Selection signature


Supported by : National Institute of Animal Science


  1. Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L: The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics 2000, 154:1785-1791.
  2. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslew E, Rowley-Conwy P, Andersson L, Cooper A: Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 2005, 307:1618-1621.
  3. Yang SL, Wang ZG, Liu B, Zhang GX, Zhao SH, Yu M, Fan B, Li MH, Xiong TA, Li K: Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet Sel Evol 2003, 35:657-671.
  4. Kim TH, Kim KS, Choi BH, Yoon DH, Jang GW, Lee KT, Chung HY, Lee HY, Park HS, Lee JW: Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J Anim Sci 2005, 83:2255-2263.
  5. Park BY, Kim NK, Lee CS, Hwang IH: Effect of fiber type on postmortem proteolysis in longisimus muscle of Landrace and Korean native black pigs. Meat Sci 2007, 77:482-491.
  6. Porto-Neto LR, Lee SH, Lee HK, Gondro C: Detection of signatures of selection using Fst. Methods Mol Biol 2013, 1019:423-436.
  7. Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens H-J, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groene MAM: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4:e6524.
  8. Hwang IH, Park BY, Cho SH, Kim JH, Lee JM: Identification of muscle proteins related to objective meat quality in Korean native black pig. Asian-Australas J Anim Sci 2004, 17:1599-1607.
  9. Illumina. []
  10. Excoffier L, Lischer H: Arlequin: An integrated software package for population genetics data analysis. Evol Bioinform 2011, 1:47-50.
  11. SNP and Variation Suite Version 7. []
  12. Patterson N, Price A, Reich D: Population Structure and Eigen analysis. PLoS Genet 2006, 2006(2):e190.
  13. Beaumont MA, Nichols RA: Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 1996, 263:1619-1626.
  14. ORG Data Repository. []
  15. Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools. []
  16. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The Structure of Haplotype Blocks in the Human Genome. Science 2002, 296:2225. doi:10.1126/science.1069424.
  17. Du ZQ, Fan B, Zhao X, Amoako R, Rothschild MF: Association analyses between type 2 diabetes genes and obesity traits in pigs. Obesity 2009, 17(17):323-329.
  18. Stachowiak M, Cieslak J, Skorczyk A, Nowakowska J, Szczerbal I, Szydlowski M, Switonski M: The pig CART (cocaine- and amphetamine-regulated transcript) gene and association of its microsatellite polymorphism with production traits. J Anim Breed Genet 2009, 126:37-42.
  19. Vicentic A, Jones DC: The CART system in appetite and drug addiction. J Pharmacol Exp Ther 2007, 320:499-506.
  20. Han SH, Shin KY, Lee SS, Ko MS, Jeong DK, Oh HS, Yang BC, Cho IC: SINE indel polymorphism of AGL gene and association with growth and carcass traits in Landrace x Jeju Black pig F(2) population. Mol Biol Rep 2010, 37:467-471.
  21. Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF: A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome 2001, 12:637-645.
  22. Rask-Andersen M, Jacobsson JA, Moschonis G, Ek AE, Chrousos GP, Marcus C, Manios Y, Fredriksson R, Schiöth HB: The MAP2K5-linked SNP rs2241423 is associated with BMI and obesity in two cohorts of Swedish and Greek children. BMC Med Genet 2012, 13:36. doi:10.1186/ 1471-2350-13-36.
  23. Carter EJ, Cosgrove RA, Gonzalez I, Eisemann JH, Lovett FA, Cobb LJ, Pell JM: MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. J Cell Sci 2009, 122:3104-3112.
  24. Kim KS, Kim JJ, Dekkers JCM, Rothschild MF: Polar overdominant inheritance of a DLK1 polymorphism is associated with growth and fatness in pigs. Mamm Genome 2003, 15:555-559.
  25. Wimmers K, Murani E, Te Pas MF, Chang KC, Davoli R, Merks JW, Henne H, Muraniova M, da Costa N, Harlizius B, Schellander K, Boll I, Braglia S, de Wit AA, Cagnazzo M, Fontanesi L, Prins D, Ponsuksili S: Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim Genet 2007, 38:474-484.
  26. Huang YZ, Wang KY, He H, Shen QW, Lei CZ, Lan XY, Zhang CL, Chen H: Haplotype distribution in the GLI3 gene and their associations with growth traits in cattle. Gene 2013, 513:141-146.
  27. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD: A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000, 141:3518-3521.
  28. Sharma P, Bottje W, Okimoto R: Polymorphisms in uncoupling protein, melanocortin 3 receptor, melanocortin 4 receptor, and proopiomelanocortin genes and association with production traits in a commercial broiler line. Poult Sci 2008, 87:2073-2086.
  29. Luoreng ZM, Wang XP, Ma Y, Li F, Guo DS, Li N, Wang JR: Three novel SNPs in the coding region of the Bovine MC3R gene and their aassociations with ggrowth traits. Biochem Genet 2014, 52:116-124.
  30. Liu S, Wang F, Yan L, Zhang L, Song Y, Xi S, Jia J, Sun G: Oxidative stress and MAPK involved into ATF2 expression in immortalized human urothelial cells treated by arsenic. Arch Toxicol 2013, 87:981-989.
  31. Racape M, Duong Van Huyen JP, Danger R, Giral M, Bleicher F, Foucher Y, Pallier A, Pilet P, Tafelmeyer P, Ashton-Chess J, Dugast E, Pettre S, Charreau B, Soulillou JP, Brouard S: The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response. PLoS One 2011, 6:e19321.
  32. Lim DH, Han JY, Kim JR, Lee YS, Kim HY: Methionine sulfoxide reductase B in the endoplasmic reticulum is critical for stress resistance and aging in Drosophila. Biochem Biophys Res Commun 2012, 419:20-269.
  33. Yim D, Jie HB, Sotiriadis J, Kim YS, Kim KS, Rothschild MF, Lanier LL, Kim YB: Molecular cloning and characterization of pig immunoreceptor DAP10 and NKG2D. Immunogenetics 2001, 53:243-249.
  34. Lanier LL: DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 2009, 227:150-160.
  35. Fujii J, Otsu K, Zorzato F, Leon SD, Khanna VK, Weiler JE, O'Brien PJ, MacLannan DH: Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991, 253:448-451.
  36. Rubin C, Megens HJ, Barrio AM, Maqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen CB, Archibald AL, Fredholm M, Groenen MA, Andersson L: Strong signatures of selection in the domestic pig genome. PNAS 2012, 2012(109):19529-1936.
  37. Kubo T, Matsui Y, Goto T, Yukata K, Yasui N: Over expression of HMGA2- LPP fusion transcripts promotes expression of the alpha 2 type XI collagen gene. Biochem Biophys Res Commun 2006, 340:476-481.
  38. Xiang X, Benson KF, Chada K: Mini-mouse: disruption of the pygmy locus in a transgenic insertional mutant. Science 1990, 247:967-969.
  39. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K, Brisbin A, Parker HG, von Holdt BM, Cargill M, Auton A, Reynolds A, Elkahloun AG, Castelhano M, Mosher DS, Sutter NB, Johnson GS, Novembre J, Hubisz MJ, Siepel A, Wayne RK, Bustamante CD, Ostrander EA: A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 2010, 8:e1000451.
  40. Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B, Lefebvre V: The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001, 1:277-290.
  41. Delagebeaudeuf C, Gassama-Diagne A, Nauze M, Ragab A, Li RY, Capdevielle J, Ferrara P, Fauvel J, Chap H: Ectopic epididymal expression of guinea pig intestinal phospholipase B. Possible role in sperm maturation and activation by limited proteolytic digestion. J Biol Chem 1998, 273:13407-13414.
  42. Zou Y, Millette CF, Sperry AO, KRP3A and KRP3B: Candidate motors in spermatid maturation in the seminiferous epithelium. Biol Reprod 2002, 66:843-855.
  43. Sasseville M, Cote N, Guillemette C, Richard FJ: New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC Dev Biol 2006, 6:47.