Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum

토마토 유전자원의 Ralstonia solanacearum에 의한 풋마름병 저항성 평가

  • Received : 2014.08.07
  • Accepted : 2014.11.10
  • Published : 2014.12.31


This study was conducted to evaluate tomato plant resistance against bacterial wilt by Ralstonia solanacearum using tomato cultivars or tomato breeding lines maintained in RDA-Genebank of Rural Development Administration and to select resistant tomato lines for breeding purpose. We evaluated the disease responses of a total of 13 cultivars and 39 breeding lines from RDA-Genebank using R. solanacearum SL341 strain, which is a representative strain in Korea. Tomato cultivar Hawaii 7996 and Moneymaker were used as a resistant control plant and a susceptible control plant, respectively. A total of 32 cultivars were susceptible and 10 cultivars showed various disease response suggesting resistant phenotype segregation in the lines. Five commercial cultivars and 5 breeding lines exhibited strong resistance to bacterial wilt by the SL341 strain. These 5 breeding lines might be used for further study of plant defense response against bacterial wilt and cloning of the resistance gene from tomato plants. Ultimately, the selected lines could be used for tomato breeding to generate bacterial wilt resistant tomato plants.


Bacterial wilt;Resistance evaluation;Solanum lycopersicum;Tomato lines


  1. Graham, T., Sequeira, L. and Huang, T. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34: 424-432.
  2. Agrama, H. A. and Scott, J. W. 2006. Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J. Am. Soc. Hort. Sci. 131: 267-272.
  3. Balatero, C. H., Hautea, D. M., Narciso, J. O. and Hanson, P. M. 2005. QTL mapping for bacterial wilt resistance in Hawaii 7996 using AFLP, RGA, and SSR markers. In: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 301-307. APS Press, St. Paul, USA.
  4. Denesh, D., Aarons, S., McGill, G. E. and Young, N. D. 1994. Genetic dissetion of oligogenic resistance to bacterial wilt in tomato. Mol. Plant-Microbe Interact. 7: 464-471.
  5. Fegan, M. and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex. In: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 449-462. Madison, APS Press.
  6. Grimault, V., Gelie, B., Lamattre, M., Prior, P. and Schimidt, J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. Mol. Pathol. 44: 105-1230
  7. Grimault, V., Prior, P. and Anais, G. 2008. A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. J. Phytopathol. 143: 349-352.
  8. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 29: 65-87.
  9. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695.
  10. Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial Wilt: the Disease and its Causative Agent Pseudomonas solanacearum. ed. by A. C. Hayward and G. L. Hartman, pp. 127-135. CAB International, Oxford, UK.
  11. Jeong, Y., Cheong, H., Choi, O., Kim, J. K., Kang, Y., Kim, J., Lee, S., Koh, S., Moon, J. S. and Hwang, I. 2011. An HrpB-dependent but type III-independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum. Mol. Plant Pathol. 12: 373-380.
  12. Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91: 1277-1287.
  13. Lee, H. J., Jo, E. J., Kim, N. H., Chae, Y. and Lee, S.-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17: 326-333.
  14. Lopes, C. A., Carvalho, S. I. C. and Boiteux, L. S. 2005. Search for resistance to bacterial wilt in a Brazilian Capsicum germplasm collection. In: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 247-251. APS press, St. Paul, USA.
  15. Marco, Y., Trigalet, A., Vasse, J., Oliver, J., Feng, D. X. and Deslandes, L. 2005. Host resistance to Ralstonia solanacearum. In: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, ed. by C. Allen, P. Prior and A. C. Hayward, pp. 275-283. APS Press, St. Paul, USA.
  16. Park, E. J., Lee, S. D., Chung, E. J., Lee, M. H., Um, H. Y., Murugaiyan, S., Moon, B. J. and Lee, S.-W. 2007. MicroTom-A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathology J. 23: 239-244.
  17. Sakata, Y., Kubo, N., Morishita, M., Kitadani, E., Sugiyama, M. and Hirai, M. 2006. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 112: 243-250.
  18. Pflieger, S., Lefebvre, V., Caranta, C., Blattes, A., Goffinet, B. and Palloix, A. 1999. Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome 42: 1100-1110.
  19. Roberts, P. D., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451.
  20. Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87: 1264-1271.
  21. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS Press, St. Paul, USA.
  22. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Ann. Rev. Phytopathol. 38: 263-292.
  23. The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-641.
  24. Thoquet, P., Oliver, J., Sperisen, C., Rogowsky, P., Laterrot, H. and Grimsley, N. 1996. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol. Plant-Microbe Interact. 9: 826-836.
  25. Um, H. Y., Kong, H. G., Lee, H. J., Choi, H. K., Park, E. J., Kim, S. T., Murugaiyan, S., Chung, E., Kang, K. Y. and Lee, S.-W. 2013. Altered gene expression and intracellular changes of the viable but nonculturable state in Ralstonia solanacearum by copper treatment. Plant Pathol. J. 29: 374-385.
  26. Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasions of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8: 241-251.
  27. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-317.
  28. Wang, J. F., Hanson, P. and Barnes, J. A. 1998. World wide evolution of an international set of resistance source to bacterial wilt in tomato. In: Bacterial Wilt Disease: Molecular and Ecological Aspects. eds. by P. Prior, C. Allen and J. Elphinstone, pp. 269-275. INRA Springer.