DOI QR코드

DOI QR Code

GM-CSF reduces expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-β-treated primary astrocytes

  • Choi, Jung-Kyoung ;
  • Park, Sang-Yoon ;
  • Kim, Kil Hwan ;
  • Park, So Ra ;
  • Lee, Seok-Geun ;
  • Choi, Byung Hyune
  • Received : 2014.01.20
  • Accepted : 2014.02.10
  • Published : 2014.12.31

Abstract

GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.

Keywords

CSPG core proteins;Glial scar;GM-CSF;Primary astrocytes;TGF-${\beta}$

References

  1. Amar, A. P. and Levy, M. L. (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44, 1027-1039; discussion 1039-1040. https://doi.org/10.1097/00006123-199905000-00052
  2. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. and Beattie, M. S. (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73-76. https://doi.org/10.1038/nm0197-73
  3. Sandvig, A., Berry, M., Barrett, L. B., Butt, A. and Logan, A. (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46, 225-251. https://doi.org/10.1002/glia.10315
  4. Jones, L. L., Margolis, R. U. and Tuszynski, M. H. (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182, 399-411. https://doi.org/10.1016/S0014-4886(03)00087-6
  5. Silver, J. and Miller, J. H. (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146-156. https://doi.org/10.1038/nrn1326
  6. David, S. and Ousman, S. S. (2002) Recruiting the immune response to promote axon regeneration in the injured spinal cord. Neuroscientist 8, 33-41. https://doi.org/10.1177/107385840200800108
  7. Schermer, C. and Humpel, C. (2002) Granulocyte macrophage-colony stimulating factor activates microglia in rat cortex organotypic brain slices. Neurosci. Lett. 328, 180-184. https://doi.org/10.1016/S0304-3940(02)00496-2
  8. Kim, J. K., Choi, B. H., Park, H. C., Park, S. R., Kim, Y. S., Yoon, S. H., Park, H. S., Kim, E. Y. and Ha, Y. (2004) Effects of GM-CSF on the neural progenitor cells. Neuroreport 15, 2161-2165. https://doi.org/10.1097/00001756-200410050-00003
  9. Kannan, Y., Moriyama, M., Sugano, T., Yamate, J., Kuwamura, M., Kagaya, A. and Kiso, Y. (2000) Neurotrophic action of interleukin 3 and granulocyte-macrophage colony-stimulating factor on murine sympathetic neurons. Neuroimmunomodulation 8, 132-141. https://doi.org/10.1159/000054273
  10. Franzen, R., Bouhy, D. and Schoenen, J. (2004) Nervous system injury: focus on the inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci. Lett. 361, 76-78. https://doi.org/10.1016/j.neulet.2003.12.018
  11. Saada, A., Reichert, F. and Rotshenker, S. (1996) Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J. Cell Biol. 133, 159-167. https://doi.org/10.1083/jcb.133.1.159
  12. Ousman, S. S. and David, S. (2001) MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J. Neurosci. 21, 4649-4656.
  13. Bouhy, D., Malgrange, B., Multon, S., Poirrier, A. L., Scholtes, F., Schoenen, J. and Franzen, R. (2006) Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 20, 1239-1241. https://doi.org/10.1096/fj.05-4382fje
  14. Ha, Y., Kim, Y. S., Cho, J. M., Yoon, S. H., Park, S. R., Yoon, D. H., Kim, E. Y. and Park, H. C. (2005) Role of granulocyte-macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J. Neurosurg. 2, 55-61. https://doi.org/10.3171/spi.2005.2.1.0055
  15. Park, H. C., Shim, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H. and Park, H. S. (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Engineering 11, 913-922. https://doi.org/10.1089/ten.2005.11.913
  16. Yoon, S. H., Shim, Y. S., Park, Y. H., Chung, J. K., Nam, J. H., Kim, M. O., Park, H. C., Park, S. R., Min, B. H., Kim, E. Y., Choi, B. H., Park, H. and Ha, Y. (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25, 2066-2073. https://doi.org/10.1634/stemcells.2006-0807
  17. Huang, X., Choi, J. K., Park, S. R., Ha, Y., Park, H., Yoon, S. H., Park, H. C., Park, J. O. and Choi, B. H. (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci. Res. 58, 50-57. https://doi.org/10.1016/j.neures.2007.01.015
  18. Kim, N. K., Choi, B. H., Huang, X., Snyder, B. J., Bukhari, S., Kong, T. H., Park, H., Park, H. C., Park, S. R. and Ha, Y. (2009) Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson's disease model. European J. Neurosci. 29, 891-900. https://doi.org/10.1111/j.1460-9568.2009.06653.x
  19. Kong, T., Choi, J. K., Park, H., Choi, B. H., Snyder, B. J., Bukhari, S., Kim, N. K., Huang, X., Park, S. R., Park, H. C. and Ha, Y. (2009) Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. Laboratory investigation. J. Neurosurg. 111, 155-163. https://doi.org/10.3171/2008.12.JNS08172
  20. Huang, X., Kim, J. M., Kong, T. H., Park, S. R., Ha, Y., Kim, M. H., Park, H., Yoon, S. H., Park, H. C., Park, J. O., Min, B. H. and Choi, B. H. (2009) GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J. Neurol. Sci. 277, 87-97. https://doi.org/10.1016/j.jns.2008.10.022
  21. Asher, R. A., Morgenstern, D. A., Fidler, P. S., Adcock, K. H., Oohira, A., Braistead, J. E., Levine, J. M., Margolis, R. U., Rogers, J. H. and Fawcett, J. W. (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20, 2427-2438.
  22. Smith, G. M. and Strunz, C. (2005) Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia 52, 209-218. https://doi.org/10.1002/glia.20236
  23. Monnier, P. P., Sierra, A., Schwab, J. M., Henke-Fahle, S. and Mueller, B. K. (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell Neurosci. 22, 319-330. https://doi.org/10.1016/S1044-7431(02)00035-0
  24. Zhang, Y. E. (2009) Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128-139. https://doi.org/10.1038/cr.2008.328
  25. Guthridge, M. A., Stomski, F. C., Thomas, D., Woodcock, J. M., Bagley, C. J., Berndt, M. C. and Lopez, A. F. (1998) Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301-313. https://doi.org/10.1002/stem.160301
  26. Choi, J. K., Choi, B. H., Ha, Y., Park, H., Yoon, S. H., Park, H. C. and Park, S. R. (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci. Lett. 420, 217-222. https://doi.org/10.1016/j.neulet.2007.03.065
  27. Iannotti, C., Zhang, Y. P., Shields, L. B., Han, Y., Burke, D. A., Xu, X. M. and Shields, C. B. (2006) Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J. Neurotrauma 23, 853-865. https://doi.org/10.1089/neu.2006.23.853
  28. Roitbak, T. and Sykova, E. (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40-48. https://doi.org/10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO;2-6
  29. Hynds, D. L. and Snow, D. M. (1999) Neurite outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/ stopping exceeds turning in human neuroblastoma growth cones. Exp. Neurol. 160, 244-255. https://doi.org/10.1006/exnr.1999.7212
  30. Logan, A., Berry, M., Gonzalez, A. M., Frautschy, S. A., Sporn, M. B. and Baird, A. (1994) Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6, 355-363. https://doi.org/10.1111/j.1460-9568.1994.tb00278.x
  31. Schwab, J. M., Beschorner, R., Nguyen, T. D., Meyermann, R. and Schluesener, H. J. (2001) Differential cellular accumulation of connective tissue growth factor defines a subset of reactive astrocytes, invading fibroblasts, and endothelial cells following central nervous system injury in rats and humans. J. Neurotrauma 18, 377-388. https://doi.org/10.1089/089771501750170930
  32. Logan, A., Green, J., Hunter, A., Jackson, R. and Berry, M. (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur. J. Neurosci. 11, 2367-2374. https://doi.org/10.1046/j.1460-9568.1999.00654.x
  33. John, G. R., Chen, L., Rivieccio, M. A., Melendez-Vasquez, C. V., Hartley, A. and Brosnan, C. F. (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J. Neurosci. 24, 2837-2845. https://doi.org/10.1523/JNEUROSCI.4789-03.2004
  34. Holmberg, E., Zhang, S. X., Sarmiere, P. D., Kluge, B. R., White, J. T. and Doolen, S. (2008) Statins decrease chondroitin sulfate proteoglycan expression and acute astrocyte activation in central nervous system injury. Exp. Neurol. 214, 78-86. https://doi.org/10.1016/j.expneurol.2008.07.020
  35. Chan, C. C., Wong, A. K., Liu, J., Steeves, J. D. and Tetzlaff, W. (2007) ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Glia 55, 369-384. https://doi.org/10.1002/glia.20466
  36. Gopalakrishnan, S. M., Teusch, N., Imhof, C., Bakker, M. H., Schurdak, M., Burns, D. J. and Warrior, U. (2008) Role of Rho kinase pathway in chondroitin sulfate proteoglycan-mediated inhibition of neurite outgrowth in PC12 cells. J. Neurosci. Res. 86, 2214-2226. https://doi.org/10.1002/jnr.21671
  37. Lingor, P., Teusch, N., Schwarz, K., Mueller, R., Mack, H., Bahr, M. and Mueller, B. K. (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J. Neurochem. 103, 181-189.
  38. Jain, A., Brady-Kalnay, S. M. and Bellamkonda, R. V. (2004) Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J. Neurosci. Res. 77, 299-307. https://doi.org/10.1002/jnr.20161
  39. Just, I., Rohrbeck, A., Huelsenbeck, S. C. and Hoeltje, M. (2011) Therapeutic effects of Clostridium botulinum C3 exoenzyme. Naunyn. Schmiedebergs. Arch. Pharmacol. 383, 247-252. https://doi.org/10.1007/s00210-010-0589-3

Cited by

  1. Effect of task-specific training on Eph/ephrin expression after stroke vol.49, pp.11, 2016, https://doi.org/10.5483/BMBRep.2016.49.11.172
  2. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury vol.21, pp.9, 2015, https://doi.org/10.1111/cns.12429
  3. Acute granulocyte macrophage-colony stimulating factor treatment modulates neuroinflammatory processes and promotes tactile recovery after spinal cord injury vol.349, 2017, https://doi.org/10.1016/j.neuroscience.2017.02.035
  4. Extracellular matrix and traumatic brain injury vol.96, pp.4, 2018, https://doi.org/10.1002/jnr.24151

Acknowledgement

Supported by : National Research Foundation of Korea