DOI QR코드

DOI QR Code

Xylanase Production by Mixed Culture Using Crude Hemicellulose from Rice Straw Black Liquor and Peat Moss as an Inert Support

  • Received : 2014.03.26
  • Accepted : 2014.06.10
  • Published : 2014.12.31

Abstract

Black liquor (BL) is a by-product of rice straw pulping process. It is a low costs raw material for production value-adding proteins and enzymes, which has been paid more and more attention to reduce its environmental pollution. Mixed cultures of micelial fungi, Trichoderma reesei Northern Regional Research Laboratory (NRRL)11236, Trichoderma reesei NRRL 6165 and Aspergillus niger strains NRC 5A, NRC 7A, and NRC 9A were evaluated for their ability to produce xylanase using crude hemicellulose (CHC) prepared from BL and peat moss as an inert support under solid state fermentation (SSF). The most potent strains, A. niger NRC 9A (818.26 U/g CHC) and T. reesei NRRL 6165 ($100.9{\pm}57.14$ U/g CHC), were used in a mixed culture to enhance xylanase production by co-culturing under SSF. In the mixed culture, xylanase production ($1070.52{\pm}12.57$ U/g CHC) was nearly1.3 and 10.6-fold increases over the activities attained in their monocultures, A. niger NRC 9A and T. reesei NRRL 6165, respectively. Optimization of the culture parameters of the mixed culture SSF process, concentration of ammonium sulfate and corn steep liquor, CHC/peat moss ratio, inoculum size and ratios of the two strains, initial pH value, initial moisture content and incubation time, exhibited a significant increase ($2414.98{\pm}84.02$ U/g CHC) in xylanase production than before optimization.

Acknowledgement

Supported by : National Research Center Authority

References

  1. Ahamed A and Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42, 41-6. https://doi.org/10.1016/j.bej.2008.05.007
  2. Annuar MSM, Murthy SS, and Sabanatham V (2010) Laccase production from oil palm industry solid waste: Statistical optimization of selected process parameters. Eng Life Sci 10, 40-8. https://doi.org/10.1002/elsc.200900044
  3. Beg QK, Kapoor M, Mahajan L, and Hoondal GS (2001) Microbial xylanases and their industrial applications: A review. Appl Microbiol Biotechnol 56(3-4), 326-38. https://doi.org/10.1007/s002530100704
  4. Brijwani K, Oberoi HS, and Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45, 120-8. https://doi.org/10.1016/j.procbio.2009.08.015
  5. Castillo MR, Gutierrez-Correa M, Linden JC, and Tengerdy RP (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotecnol Lett 16, 967-72. https://doi.org/10.1007/BF00128635
  6. Collins T, Gerday C, and Feller G (2005) Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol Rev 29, 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  7. Corral OL and Villasenor-Ortega F (2006) Xylanases. Adv Agr Food Biotechnol 2006, 305-22
  8. De Almeida MN, Guimaraes VM, Bischoff KM, Falkoski DL, Pereira OL, Goncalves DS et al. (2011) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165(2), 594-610. https://doi.org/10.1007/s12010-011-9278-z
  9. Deshpande SK, Bhotmange MG, Chakrabarti T, and Shastri PN (2008) Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth ( Eichhornia crassipes). Ind J Chem Technol 15, 449-56.
  10. Duenas R, Tengerdy RP, and Gutierrez-Correa M (1995) Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microbiol Biotechnol 11, 333-7. https://doi.org/10.1007/BF00367112
  11. Dwivedi P, Vivekanand V, Pareek N, Sharma A, and Singh RP (2011) Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotusos treatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnol 28(6), 616-26. https://doi.org/10.1016/j.nbt.2011.05.006
  12. Ellaiah P, Adinarayana K, Bhavani Y, Padmaja P, and Srinivasulu A (2002) Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem 38, 615-20. https://doi.org/10.1016/S0032-9592(02)00188-7
  13. Gawande PV and Kamat MY (1999) Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol 87, 511-9. https://doi.org/10.1046/j.1365-2672.1999.00843.x
  14. Gelmi C, Perez-Correa R, Gonz'alez M, and Agosin E (2000) Solid substrate cultivation of Gibberella fujikuroi on an inert support. Process Biochem 35, 1227-33. https://doi.org/10.1016/S0032-9592(00)00161-8
  15. Gutierrez-Correa M and Tengerdy RP (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol Lett 20, 45-7. https://doi.org/10.1023/A:1005379030092
  16. Hamidi-Esfahani Z, Shojaosadatia SA, and Rinzema A (2004) Modelling of simultaneous effect of moisture and temperature on Aspergillus niger growth in solid-state fermentation. Biochem Eng J 21, 265-72. https://doi.org/10.1016/j.bej.2004.07.007
  17. Hu HL, van den Brink J, Gruben BS, Wosten HAB, Gu JD, and de Vries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad 65, 248-52. https://doi.org/10.1016/j.ibiod.2010.11.008
  18. Ibrahim D, Puspitaloka H, Rahim RA, and Hong LS (2012) Characterization of solid state fermentation culture conditions for growth and mananase production by Aspergillus niger USM F4 on rice husk in tray system. Br Biotechnol J 2(3),133-45. https://doi.org/10.9734/BBJ/2012/1486
  19. Kaushal R, Sharma N, and Tandon D (2012) Cellulase and xylanase production by co-culture of Aspergillus niger and Fusarium oxysporum utilizing forest waste. Turkish J Biochem 37(1), 35-41. https://doi.org/10.5505/tjb.2012.43434
  20. Kuhad RC, Gupta R, Khasa YP, Singh A, and Zhang YHP (2011) Bioethanol production from pentose sugars: Current status and future prospects. Renew Sust Energ 15(9), 4950-62. https://doi.org/10.1016/j.rser.2011.07.058
  21. Kulp K and Ponte JG (2000) Handbook of Cereal Science and technology. In Revised and expanded, (2nd ed.), p. 790. Marcel Dekker, Inc., USA.
  22. Lee CK, Darah I, and Ibrahim CO (2011) Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnology Research International, doi: 10.4061/2011/658493. https://doi.org/10.4061/2011/658493
  23. Lareo C, Sposito AF, Bossio AL, and Volpe DC (2006) Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support. Enz Microb Technol 38, 391-9. https://doi.org/10.1016/j.enzmictec.2005.06.009
  24. Laukevics JJ, Apsite AF, and Viesturs UE (1984) Solid substrate fermentation of wheat straw to fungal protein. Biotechnol Bioeng 26, 1465-74 https://doi.org/10.1002/bit.260261211
  25. Lora JH and Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10, 39-48. https://doi.org/10.1023/A:1021070006895
  26. Maciel GM, Vandenberghe LP, Haminiuk CWI, Fendrich RC, Bianca BED, Brandalize TQ et al. (2008) Xylanase Production by A. niger in SSF. Food Technol Biotechnol 46(2), 183-9.
  27. Mahanama R, Berenjian A, Talbot A, Biffin R, Regtop H, Dehghani F et al. (2011) Effects of inoculation loading and substrate bed thickness on the production of menaquinone 7 via solid state fermentation. Proc World Congr Eng Comput Sci, Vol. II WCECS, 19-21.
  28. Massadeh MI, Yusoff WMW, Omar O, and Kader J (2001) Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnol Lett 23, 1771-4. https://doi.org/10.1023/A:1012448401369
  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-9. https://doi.org/10.1021/ac60147a030
  30. Nawwar AM, EL-Katib M, and Zawawy WK (2008) Paper pulp from rice straw using solar energy. Egyptian patent No.2008030442, Egypt.
  31. Niladevi KN and Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its applications in dye decolourization. Biores Technol 99, 4583-9. https://doi.org/10.1016/j.biortech.2007.06.056
  32. Noor El-Deen AM, Shata HMA, and Farid MA (2014) Improvement of ${\beta}$-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. Ann Microbiol 64:627-37. https://doi.org/10.1007/s13213-013-0696-8
  33. Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, and Rinzema A (2000) Defined media and inert supports: their potential as solid state fermentation production systems. TIBTECH 18, 356-60. https://doi.org/10.1016/S0167-7799(00)01466-9
  34. Pandey A, Soccol CR, Rodriguez-Leon JA, and Nigam P (2001) In Solid-state fermentation in Biotechnology: Fundamentals and applications, (1st ed.), Asiatech Publishers Inc., Republic of India.
  35. Parkinson D, Gray TRG, and Williams ST (1971) Methods for studying the ecology of soil micro-organisms. International Biological Programme Handbook No 19. Blackwell, Oxford, UK.
  36. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, and Amorim DS (2005) Xylanases from fungi: Properties and industrial applications. Appl Microbiol Biotechnol 67(5), 577-91. https://doi.org/10.1007/s00253-005-1904-7
  37. Raghavarao RKS, Ranganatha TV, and Karanth NG (2003) Some engineering aspects of solid state fermentation. Biochem Eng 13, 127-35. https://doi.org/10.1016/S1369-703X(02)00125-0
  38. Romdhane BIB, Achouri IM, and Belghith H (2010) Improvement of highly thermostable xylanases production by Talaromyces thermophiles for the agro-industrials residue hydrolysis. Appl Biochem Biotechnol 162(6), 1635-46. https://doi.org/10.1007/s12010-010-8945-9
  39. Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, and Gupta VK (2008) Optimization of xylanase production using inexpensive agro-residues by alkaliphilic Bacillus subtilis ASH in solid-state fermentation. World J Microbiol Biotechnol 24, 633-40. https://doi.org/10.1007/s11274-007-9521-5
  40. Selby K (1968) Mechanism of biodegradation of cellulose. In Biodeterioration of materials, Walters AH and Elphick JJ, pp. 62-78. Elsevier, USA.
  41. Shahi SS, Alemzadeh I, Khanahmadi M, and Roostaazad R (2011) Xylanase production under solid state fermentation by Aspergillus niger. IJE Transactions B: Applications 24(3), 197-208.
  42. Shallom D and Shoham Y (2003) Microbial hemicellulases.Curr Opin Microbiol 6, 219-28. https://doi.org/10.1016/S1369-5274(03)00056-0
  43. Verma P and Madamwar D (2002) Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol 102-103(1-6), 109-18. https://doi.org/10.1385/ABAB:102-103:1-6:109
  44. Wen Z, Liao W, and Chen S (2005) Production of cellulase/${\beta}$-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem 40, 3087-94. https://doi.org/10.1016/j.procbio.2005.03.044
  45. Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM, and Zhang XQ (2006) Efficient production of laccases by Trametes sp. AH28-2 in co-cultivation with a Trichoderma strain. Appl Microbiol Biotechnol 73(1), 89-94. https://doi.org/10.1007/s00253-006-0430-6

Cited by

  1. β-Glucosidase production by mixed culture using crude hemicellulose from rice straw black liquor and peat moss as an inert support vol.13, pp.2, 2014, https://doi.org/10.4103/1687-4315.147074