DOI QR코드

DOI QR Code

Multicarbohydrase Enzymes for Non-ruminants

  • Masey O'Neill, H.V. (AB Vista Feed Ingredients) ;
  • Smith, J.A. (AB Vista Feed Ingredients) ;
  • Bedford, M.R. (AB Vista Feed Ingredients)
  • Received : 2013.05.12
  • Accepted : 2013.09.14
  • Published : 2014.02.01

Abstract

The first purpose of this review is to outline some of the background information necessary to understand the mechanisms of action of fibre-degrading enzymes in non-ruminants. Secondly, the well-known and understood mechanisms are described, i) eliminating the nutrient encapsulating effect of the cell wall and ii) ameliorating viscosity problems associated with certain Non Starch Polysaccharides, particularly arabinoxylans and ${\beta}$-glucans. A third, indirect mechanism is then discussed: the activity of such enzymes in producing prebiotic oligosaccharides and promoting beneficial cecal fermentation. The literature contains a wealth of information on various non starch polysaccharide degrading enzyme (NSPase) preparations and this review aims to conclude by discussing this body of work, with reference to the above mechanisms. It is suggested that the way in which multi- versus single-component products are compared is often flawed and that some continuity should be employed in methods and terminology.

Keywords

Broiler;Enzyme;Glucanase;Non-starch Polysaccharide;Xylanase

References

  1. Aftab, U. 2012. Exogenous carbohydrase in corn-soy diets for broilers. World's Poult. Sci. J. 68:447-464. https://doi.org/10.1017/S0043933912000566
  2. Angkanaporn, K., M. Choct, W. L. Bryden, and E. F. Annison. 1994. Effects of wheat pentosans on endogenous amino acid losses in chickens. J. Sci. Food Agric. 66:399-404. https://doi.org/10.1002/jsfa.2740660319
  3. Annison, G. 1991. Relationship between the levels of soluble non starch polysaccharides and the apparent metabolisable energy of wheats assayed in broiler chickens. J. Agric. Food Chem. 39:1252-1256. https://doi.org/10.1021/jf00007a011
  4. Annison, G. 1992. Commercial enzyme supplementation of wheat-based diets raises ileal glycanase activities and improves apparent metabolisable energy, starch and pentosan digestibilities in broiler chickens. Anim. Feed Sci. Technol. 38:105-121 https://doi.org/10.1016/0377-8401(92)90096-O
  5. Annison, G. and M. Choct. 1991. Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poult. Sci. J. 47:232-242. https://doi.org/10.1079/WPS19910019
  6. Antoniou, T., R. R. Marquardt, and P. E. Cansfield. 1981. Isolation, partial characterisation and antinutritional activity of a factor (pentosans) in rye grain. J. Agric. Food Chem. 29:1240-1247. https://doi.org/10.1021/jf00108a035
  7. Apajalahti, J., A. Kettunen, and H. Graham. 2004. Characteristics of the gastro-intestinal microbial communities, with special reference to the chicken. World's Poult. Sci. 60:223-232. https://doi.org/10.1079/WPS20040017
  8. Arscott, G. H. and R. J. Rose. 1960. Use of barley in high-efficiency broiler rations. 4. Influence of amylolytic enzymes on efficiency of utilization, water consumption and litter condition. Poult. Sci. 39:93-95. https://doi.org/10.3382/ps.0390093
  9. Bedford, M. R., H. L. Classen, and G. L. Campbell. 1991. The effect of pelleting, salt and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci. 70:1571-1577. https://doi.org/10.3382/ps.0701571
  10. Bedford, M. R. and H. L. Classen. 1992. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 122:560-569.
  11. Bedford, M. R., F. G. Silversides, and W. D. Cowan. 2001. Process stability and methods of detection of feed enzymes in complete diets. In: Enzymes in farm animal nutrition (Ed. M. R. Bedford and G. G. Partridge). CABI, Oxford, UK. pp. 377-388.
  12. Bedford, M. R. and A. J. Cowieson. 2012. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol. 173:76-85. https://doi.org/10.1016/j.anifeedsci.2011.12.018
  13. Biggs, P., C. M. Parsons, and G. C. Fahey. 2007. The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poult. Sci. 86:2327-2336. https://doi.org/10.3382/ps.2007-00427
  14. Burnett, G. S. 1966. Studies of viscosity as the probable factor involved in the improvement of certain barleys for chickens by enzyme supplementation. Br. Poult. Sci. 7:55-75. https://doi.org/10.1080/00071666608415606
  15. Burton, R. A. and G. B. Fincher. 2009. (1,3:1,4)-{$\beta$}-D-glucans in cell walls of the poaceae, lower plants and funghi: a tale of two linkages. Mol. Plant 2:873-882. https://doi.org/10.1093/mp/ssp063
  16. Cengiz, O., J. B. Hess, and S. F. Bilgili. 2012. Feed enzyme supplementation does not ameliorate foot pad dermatitis in broiler chickens fed on a corn-soyabean diet. Br. Poult. Sci. 53: 401-407. https://doi.org/10.1080/00071668.2012.711467
  17. Chesson, A. 1987. Supplementary enzymes to improve the utilization of pig and poultry diets. Rec. Adv. Anim. Nutr. 6: 71-89.
  18. Choct, M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, June Issue: 13-26.
  19. Choct, M. 1999. Effects of commercial enzymes on wet droppings in four strains of layers fed a barley-based diet. Proc. Aust. Poult. Sci. Sym., 11:89-92.
  20. Choct, M. and G. Annison. 1990. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult. Sci. 31:811-821 https://doi.org/10.1080/00071669008417312
  21. Choct, M., R. J. Hughes, J. Wang, M. R. Bedford, A. J. Morgan, and G. Annison. 1996. Increased small intestine fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 37:609-621. https://doi.org/10.1080/00071669608417891
  22. Choct, M., R. J. Hughes, and M. R. Bedford. 1999. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 40:419-422. https://doi.org/10.1080/00071669987548
  23. Choct, M., A. Kocher, D. L. E. Waters, D. Pettersson, and G. Ross. 2004. A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br. J. Nutr. 92:53-61. https://doi.org/10.1079/BJN20041166
  24. Clickner, F. H. and E. H. Follwell. 1926. Application of 'Protozyme' (Aspergillus orizae) to poultry feeding. Poult. Sci. 5:241-247. https://doi.org/10.3382/ps.0050241
  25. Courtin, C. M., W. F. Broekaert, K. Swennen, O. Lescroart, O. Onagbesan, J. Buyse, E. Decuypere, T. van de Wiele, M. Marzorati, W. Verstraete, and G. Huyghebaert. 2008. Dietary inclusion of wheat bran arabinooligosaccharides induces benefical nutritional effects in chickens. Cereal Chem. 85: 607-613. https://doi.org/10.1094/CCHEM-85-5-0607
  26. Cowan, D., D. R. Pettersson, and G. M. Ross. 1999. Investigations into the effect of xylanases and pectinases on broilers performance in sorghum based diets with low levels of wheat. Proc. Aust. Poult. Sci. Sym. 11:112-115.
  27. Cowieson, A. J., M. R. Bedford, and V. Ravindran. 2010. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 51:246-257. https://doi.org/10.1080/00071661003789347
  28. Cowieson, A. J. and H. V. Masey O'Neill. 2013. Effects of exogenous xylanase on performance, nutrients digestibility and caecal thermal profiles of broilers given wheat based diets. Br. Poult. Sci. 54:346-354.
  29. Damen, B., A. Pollet, E. Dornez, W. F. Broekaert, I. Van Haesendonck, I. Trogh, F. Arnaut, J. A. Delcour, and C. M. Courtin. 2012. Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole mean breads and breads enriched with arabinoxylan rich materials. Food Chem. 131:111-118. https://doi.org/10.1016/j.foodchem.2011.08.043
  30. Danicke, S., O. Simon, H. Jeroch, and M. R. Bedford. 1997. Interactions between dietary fat type and xylanase supplementation when rye-based diets are fed to broiler chickens. 1. Physiochemical chime features. Br. Poult. Sci. 38:537-545. https://doi.org/10.1080/00071669708418034
  31. Esteve-Garcia, E., J. Brufau, A. Perez-Vendrell, A. Miquel, and K. Duven. 1997. Bioefficacy of enzyme preparations containing $\beta$-glucanase and xylanase activities in broiler diets based on barley or wheat in combination with flavomycin. Poult. Sci. 76:1728-1737. https://doi.org/10.1093/ps/76.12.1728
  32. Francesch, M., A. M. Perez-Vendrell, and J. Broz. 2012. Effects of a mono-component endo-xylanase supplementation on the nutritive value of wheat-based broiler diets. Br. Poult. Sci. 53:809-816. https://doi.org/10.1080/00071668.2012.750714
  33. Fry, R. E., J. B. Allred, L. S. Jensen, and J. McGinnis. 1958. Influence of enzyme supplementation and water treatment on the nutritional value of different grains for poults. Poult. Sci. 37:372-375. https://doi.org/10.3382/ps.0370372
  34. Fuller, R. 1997. Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. (Suppl.) 222:28-31.
  35. Gohl, B., S. Alden, K. Elwinger, and S. Thomke. 1978. Influence of $\beta$-glucanase on feeding value of barley for poultry and moisture contents of excreta. Br. Poult. Sci. 19:41-47. https://doi.org/10.1080/00071667808416440
  36. Goodlad, R. A., W. Lenton, M. Ghatei, T. E. Adrian, S. R. Bloom, and N. A. Wright. 1987. Proliferative effects of 'fibre' on the intestinal epithelium: relationship to gastrin, enteroglucagon and PYY. Gut 28:221-226.
  37. Grootwassink, J. W. D., G. L. Campbell, and H. L. Classen. 1989. Fractionation of crude pentosanase (arabinoxylanase) for improvement of the nutritional value of rye diets for broiler chickens. J. Sci. Food Agric. 46:289-300. https://doi.org/10.1002/jsfa.2740460306
  38. Guais, O., G. Borderies, C. Pichereaux, M. Maestracci, V. Neugnot, M. Rossignol, and J. M. Francois. 2008. Proteomics analysis of 'Rovabio Excel', a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J. Ind. Microbiol. Biotechnol. 35:1659-1668. https://doi.org/10.1007/s10295-008-0430-x
  39. Hervey, G. W. 1925. A nutritional study upon a fungus enzyme. Science 62:247.
  40. Hesselman, K., K. Elwinger, M. Nilsson, and S. Thomke. 1981. The effect of -glucanase supplementation, stage of ripeness and storage treatment of barley in diets fed to broiler chickens. Poult. Sci. 60:2664-2671. https://doi.org/10.3382/ps.0602664
  41. Hesselman, K., K. Elwinger, and S. Thomke. 1982. Influence of increasing levels of $\beta$-glucanase on the productive value of barley diets for broiler chickens. Anim. Feed Sci. Technol. 7:351-358. https://doi.org/10.1016/0377-8401(82)90004-9
  42. Hesselman, K. and P. Aman. 1986. The effect of B-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low- or high- viscosity. Anim. Feed Sci. Technol. 15: 83-93. https://doi.org/10.1016/0377-8401(86)90015-5
  43. Inboor, J. and M. R. Bedford. 1994. Stability of feed enzymes to steam pelleting during feed processing. Anim. Feed Sci. Technol. 46:179-196. https://doi.org/10.1016/0377-8401(94)90138-4
  44. Inborr, J., J. Puhakka., J. G. M. Bakker, and J. van der Meulen. 1999. $\beta$-Glucanase and xy;lanase activities in stomach and ileum of groeing pigs fed wheat bran based diets with and without enzyme treatment. Archiv. Fur. Tierernaehrung 52:263-274. https://doi.org/10.1080/17450399909386166
  45. Jensen, L. S., R. E. Fry, J. B. Allred, and J. McGinnis. 1957. Improvement in the nutritional value of barley for chicks by enzyme supplementation. Poult. Sci. 36:919-921. https://doi.org/10.3382/ps.0360919
  46. Józefiak, D., A. Ptak, S. Kaczmarek, P. Maçkowiak, M. Sassek, and B. A. Slominski. 2010. Multi-carbohydrase and phytase supplementation improves growth performance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fat rapeseed. Poult. Sci. 89:1939-1946. https://doi.org/10.3382/ps.2010-00694
  47. Kalmendal, R. and R. Tauson. 2012. Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet. Poult. Sci. 91:1387-1393. https://doi.org/10.3382/ps.2011-02064
  48. Li, Y., X, Chen, Y. Chen, Z. Li, and Y. Cao. 2010. Effects of $\beta$-mannanase expressed by Pichia pastoris in corn-soybean meal diets on broiler performance, nutrient digestibility, energy utilization and immunoglobulin levels. Anim. Feed Sci. Technol. 159:59-67. https://doi.org/10.1016/j.anifeedsci.2010.05.001
  49. MacAuliffe, T., A. Pietraszek, and J. McGinnis. 1976. Variable rachitogenic effect of grain and alleviation by extraction or supplementation with vitamin D, fat and antibiotics. Poult. Sci. 55:2142-2147. https://doi.org/10.3382/ps.0552142
  50. Macauliffe, T. and J. McGinnis. 1971. Effect of antibiotic supplements to diets containing rye on chick growth. Poult. Sci. 50:1130-1134. https://doi.org/10.3382/ps.0501130
  51. Marquardt, R. R., A. T. Ward, and R. Misir. 1979. The retention of nutrients by chicks fed rye diets supplemented with amino acids and penicillin. Poult. Sci. 58:631-640. https://doi.org/10.3382/ps.0580631
  52. Masey O'Neill, H. V, M. R. Bedford, H. Graham, and A. Kumar. 2012a. Comparing a thermotolerant xylanase with a multi-enzyme blend in wheat-based broiler diets. Proc. Aust. Poult. Sci. Sym. 23:280-282.
  53. Masey O'Neill, H. V., N. Lui, J. P. Wang, A. Diallo, and S. Hill. 2012b. Effect of xylanase on performance and apparent metabolisable energy in starter broilers fed diets containing one maize variety harvested in different regions of China. Asian-Aust. J. Anim. Sci. 25:515-523. https://doi.org/10.5713/ajas.2011.11314
  54. Mendes, A. R., T. Ribiero, B. A. Correia, P. Bule, B. Macas, L. Falcao, J. P. B. Freire, L. M. A. Ferreira, C. M. G. A. Fontes, and M. M. Lordelo. 2013. Low doses of exogenous xylanase improve the nutritive value of triticale based diets for broilers. J. Appl. Poult. Res. 22:92-99. https://doi.org/10.3382/japr.2012-00610
  55. Meng, X., B. A. Slominski, C. M. Nyachoti, R. G. Campbell, and W. Guenter. 2005. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult. Sci. 84:37-47. https://doi.org/10.1093/ps/84.1.37
  56. Moran, E. T. and McGinnis. 1968. Growth of chicks and turkey poults fed western barley and corn- based rations: Effect of autoclaving on supplemental enzyme requirement and assymetry of antibiotic response between grains. Poult. Sci. 47:152-158. https://doi.org/10.3382/ps.0470152
  57. Moran, E. T., S. P. Lall, and J. D. Summers. 1969. The feeding value of rye for the growing chick; Effect of enzyme supplements, antibiotics, autoclaving and geographical area of production. Poult. Sci. 48:939-949. https://doi.org/10.3382/ps.0480939
  58. Murphy, T. C., M. R. Bedford, and K. McCracken. 2005. Xylanase action on non-starch polysaccharides along the digestive tract of broilers. Br. Poult. Abs. 1.38.
  59. Omogbenigun, F. O., C. M. Nyachoti, and B. A. Slominski. 2004. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 82:1053-1061.
  60. Persia, M. E., B. A. Dehority, and M. S. Lilburn. 2002. The effects of enzyme supplementation of corn- and wheat-based diets on nutrient digestion and cecal microbial populations in turkeys. J. Appl. Poult. Res. 11:134-145. https://doi.org/10.1093/japr/11.2.134
  61. Persson, I., F. Tjerneld, and B. Hahn-Hagerdal. 1991. Fungal cellulolytic enzyme production: A review. Proc. Biochem. 26:65-74. https://doi.org/10.1016/0032-9592(91)80019-L
  62. Pettersson, P. and P. Aman. 1988. Effects of enzyme supplementation of diets based on wheat, rye, or triticale on their productive value for broiler chickens. Anim. Feed Sci. Technol. 20:313-324. https://doi.org/10.1016/0377-8401(88)90005-3
  63. Pirgozliev, V., M. R. Bedford, and T. Acamovic. 2010. Effect of dietary xylanase on energy, amino acid and mineral metabolism, and egg production and quality in laying hens. Br. Poult. Sci. 51:639-647. https://doi.org/10.1080/00071668.2010.514325
  64. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67:577-591. https://doi.org/10.1007/s00253-005-1904-7
  65. Romero, L., C. M. Parsons, P. L. Utterback, P. W. Plumstead, and R. Ravindran. 2013. Comparative effects of dietary carbohydrases without or with protease on the ileal digestibility of energy and amino acids and AMEn in young broilers. Anim. Feed Sci. Technol. 181:35-44. https://doi.org/10.1016/j.anifeedsci.2013.02.001
  66. Rose, R. J. and G. H. Arscott. 1962. Use of barley in high-efficiency broiler rations. 5. Further studies on the use of enzymes soaking and pelleting barley for chicks. Poult. Sci. 41:124-130. https://doi.org/10.3382/ps.0410124
  67. Sabatier, A. M. and N. M. Fish. 1996. Methods for analysis of feed enzymes: methodological problems? J. Appl. Poult. Sci. 5:408-413. https://doi.org/10.1093/japr/5.4.408
  68. Saulnier, L, F. Guillon, and A-L. Chateigner-Boutin. 2012. Cell wall deposition and metabolism in wheat grain. J. Cereal Sci. 56:91-108. https://doi.org/10.1016/j.jcs.2012.02.010
  69. Schaeffer, P. 1969. Sporulation and the production of antibiotics, exoenzymes and exotoxins. Bacteriol. Rev. 33:48-71.
  70. Schutte, J. B. 1990. Nutritional implications and metabolizable energy value of D- xylose and L-arabinose in chicks. Poult. Sci. 69:1724-1730. https://doi.org/10.3382/ps.0691724
  71. Seifert, S. and B. Watzl. 2007. Inulin and oligofructose: Review of experimental data on immune modulation. J. Nutr. 137:2563S-2567S.
  72. Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41. https://doi.org/10.1016/j.anifeedsci.2006.06.010
  73. Silva, S. S. P. and R. R. Smithard. 2002. Effect of enzyme supplementation of a rye-based diet on xylanases activity in the small intestine of broilers, on intestinal crypt cell proliferation and on nutrient digestibility and the growth performance of birds. Br. Poult. Sci. 43:274-282. https://doi.org/10.1080/00071660120121508
  74. Silversides, F. G. and M. R. Bedford. 1999. Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets. Poult. Sci. 78:1184-1190. https://doi.org/10.1093/ps/78.8.1184
  75. Singh, A., H. V. Masey O'Neill, T. K. Ghosh, M. R. Bedford, and S. Haldar. 2012. Effects of xylanase supplementation on performance, total volatile fatty acids and selected bacterial populations in caeca, metabolic indices and peptide YY concentrations in serum of broiler chickens fed energy restricted maize-soybean based diets. Anim. Feed Sci. Technol. 177:194-203. https://doi.org/10.1016/j.anifeedsci.2012.08.005
  76. Slominski, B. A. 2000. A new generation of enzymes for animal feeds. Proc. 21st Western Nutrition Conference, Winnipeg, Manitoba, Canada.
  77. Slominski, B. A. 2011. Recent advances in research on enzymes for poultry diets. Poult. Sci. 90:2013-2023. https://doi.org/10.3382/ps.2011-01372
  78. Somerville, C., S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk, and H. Youngs. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206-2211. https://doi.org/10.1126/science.1102765
  79. Sultan, A., Y. T. Gan, X. Li, D. Zhang, and W. L. Bryden. 2011. Dietary enzyme combinations improve sorghum ileal protein and starch digestibility during the broiler starter phase. Proc. Aust. Poult. Sci. Sym. 22:82.
  80. Thacker, P. A., G. L. Campbell, and J. Grootwassink. 1991. The effect of enyme supplementation on the nutritive value of rye-based diets for swine. Can. J. Anim. Sci. 71:489-496. https://doi.org/10.4141/cjas91-058
  81. Theander, O., E. Westerlund, P. Aman, and H. Graham. 1989. Plant cell walls and monogastric diets. Anim. Feed Sci. Technol. 23:205-225. https://doi.org/10.1016/0377-8401(89)90098-9
  82. Walk, C. L., A. J. Cowieson, J. C. Remus, C. L. Novak, and A. P. McElroy. 2011. Effects of dietary enzymes on performance and intestinal goblet cell number of broilers exposed to a live coccidia oocyst vaccine. Poult. Sci. 90:91-98. https://doi.org/10.3382/ps.2010-00760
  83. Walsh, M. C., P. A. Geraert, R. Maillard, J. Kluess, and P. G. Lawlor. 2012. The effect of a non-starch polysaccharide-hydrolysing enzyme (Rovabio-R Excel) on feed intake and body condition of sows during lactation and on progeny growth performance. Animal 6:1627-1633. https://doi.org/10.1017/S1751731112000237
  84. White, W. B., H. R. Bird, M. L. Sunde, N. Prentice, W. C. Burger, and J. A. Marlett. 1981. The viscosity interaction of barely $\beta$-glucan with trichoderma viride cellulase in the chick intestine. 60:1043-1048. https://doi.org/10.3382/ps.0601043
  85. White, W. B., H. R. Bird, M. L. Sunde, J. A. Marlett, N. Prentice, and W.C. Burger. 1983. Viscosity of $\beta$-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poult. Sci. 62:853-862. https://doi.org/10.3382/ps.0620853
  86. Woyengo, T. A., B. A. Slominski, and R. O. Jones. 2010. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci. 89:221-2229
  87. Xiao, R., R. F. Power, D. Mallonee, K. Routt, L. Spangler, A. J. Pescatore, A. H. Cantor, T. Ao, J. L. Pierce, and K. A. Dawson. 2012. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poult. Sci. 91:1660-1669. https://doi.org/10.3382/ps.2011-02035
  88. Yanez, J. L., E Beltranena, M. Cervantes, and R. T. Zijlstra. 2011. Effect of phytase and xylanase supplementation or particle size on nutrient digestibility of diets containing distillers dried grains with solubles cofermented from wheat and corn in ileal-annulated grower pigs. J. Anim. Sci. 89:113-123. https://doi.org/10.2527/jas.2010-3127
  89. Yitbarek, A., H. Echeverry, J. Brady, J. Hernandez-Doria, G. Camelo-Jaimes, S. Sharif, W. Guenter, J. D. House, and J. C. Rodriguez-Lecompte. 2012. Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poult. Sci. 91:1105-1112 https://doi.org/10.3382/ps.2011-02109
  90. Zhang, Z., R. R. Marquardt, G. Wang, W. Guenter, G. H. Crow, Z. Han, and M. R. Bedford. 1996. A simple model for predicting the response of chicks to dietary enzyme supplementation. J. Anim. Sci. 74:394-402.
  91. Zou, X. T., X. J. Qiao, and Z. R. Xu. 2006. Effect of $\beta$-Mannanase (Hemicell) on growth performance and immunity of broilers. Poult. Sci. 85:2176-2179. https://doi.org/10.1093/ps/85.12.2176

Cited by

  1. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens vol.100, pp.3, 2015, https://doi.org/10.1111/jpn.12387
  2. Assessing measurements in feed enzyme research: Phytase evaluations in broilers vol.25, pp.2, 2015, https://doi.org/10.3382/japr/pfv073
  3. Effects of an enzyme complex on in vitro dry matter digestibility of feed ingredients for pigs vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1060-1
  4. β-mannanase and mannan oligosaccharides in broiler chicken feed vol.45, pp.1, 2015, https://doi.org/10.1590/0103-8478cr20131544
  5. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2194-5
  6. Effects of in Ovo Injection and Inclusion a Blend of Essential Oils and Organic Acids in High NSPs Diets of Broiler Breeders on Performance of Them and Their Offspring vol.53, pp.3, 2016, https://doi.org/10.2141/jpsa.0150150
  7. Improving efficiency in meat production vol.75, pp.03, 2016, https://doi.org/10.1017/S0029665116000161
  8. Supplementation of pH-Stable Multienzyme Improved Growth Performance of Broiler Chickens vol.11, pp.2, 2017, https://doi.org/10.3923/ajpsaj.2017.75.82
  9. The microbial pH-stable exogenous multienzyme improved growth performance and intestinal morphology of weaned pigs fed a corn–soybean-based diet pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1358628
  10. Short-chain arabinoxylans prepared from enzymatically treated wheat grain exert prebiotic effects during the broiler starter period pp.1525-3171, 2017, https://doi.org/10.3382/ps/pex297
  11. The effects of xylanase on grower pig performance, concentrations of volatile fatty acids and peptide YY in portal and peripheral blood vol.12, pp.12, 2018, https://doi.org/10.1017/S1751731118000277
  12. The effects of phytase and xylanase supplementation on performance and egg quality in laying hens vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1483575
  13. The evolution and application of enzymes in the animal feed industry: the role of data interpretation vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1484074
  14. The effect of enzymes on release of trace elements in feedstuffs based on in vitro digestion model for monogastric livestock vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0289-2
  15. Effects of dietary β-mannanase supplementation on the additivity of true metabolizable energy values for broiler diets vol.31, pp.4, 2018, https://doi.org/10.5713/ajas.17.0785
  16. The use of NSP enzymes in poultry nutrition: myths and realities vol.74, pp.02, 2018, https://doi.org/10.1017/S0043933918000272