DOI QR코드

DOI QR Code

Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

  • Song, Ki-Duk ;
  • Lee, Woon-Kyu
  • Received : 2013.09.30
  • Accepted : 2013.11.21
  • Published : 2014.02.01

Abstract

Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets.

Keywords

Cecropin;Ascars suum;Pichia pastoris;Methanol;Antimicrobial Activity

References

  1. Allen, H. K., U. Y. Levine, T. Looft, M. Bandrick, and T. A. Casey. 2013. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol. 21:14-119. https://doi.org/10.1016/j.tim.2012.09.005
  2. Bals, R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1:141-150. https://doi.org/10.1186/rr25
  3. Cereghino, J. L. and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24:45-66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
  4. Cregg, J. M., J. L. Cereghino, J. Shi, and D. R. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16:23-52. https://doi.org/10.1385/MB:16:1:23
  5. Daly, R. and M. T. Hearn. 2005. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18:119-138. https://doi.org/10.1002/jmr.687
  6. Damasceno, L. M., I. Pla, H. J. Chang, L. Cohen, G. Ritter, L. J. Old, and C. A. Batt. 2004. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr. Purif. 37:18-26. https://doi.org/10.1016/j.pep.2004.03.019
  7. Gazit, E., W. J. Lee, P. T. Brey, and Y. Shai. 1994. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681-10692. https://doi.org/10.1021/bi00201a016
  8. Guo, C., Y. Huang, H. Zheng, L. Tang, J. He, L. Xiang, D. Liu, and H. Jiang. 2012. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp. Ther. Med. 4:1063-1068.
  9. Hancock, R. E. and M. G. Scott. 2000. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA. 97:8856-8861. https://doi.org/10.1073/pnas.97.16.8856
  10. Lee, J. -Y., A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt, and H. G. Boman. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86:9159-9162. https://doi.org/10.1073/pnas.86.23.9159
  11. Lee, D. G., J. H. Park, S. Y. Shin, S. G. Lee, M. K. Lee, K. L. Kim, and K. S. Hahm. 1997. Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure. Biochem. Mol. Biol. Int. 43:489-498.
  12. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249-270. https://doi.org/10.1002/yea.1208
  13. Pillai, A., S. Ueno, H. Zhang, J. M. Lee, and Y. Kato. 2005. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem. J. 390:207-214. https://doi.org/10.1042/BJ20050218
  14. Reddy, K. V., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24:536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
  15. Sipos, D., M. Andersson, and A. Ehrenberg. 1992. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209:163-169. https://doi.org/10.1111/j.1432-1033.1992.tb17273.x
  16. Steiner, H. 1982. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 137:283-287. https://doi.org/10.1016/0014-5793(82)80368-2
  17. Ueno, S., K. Kusaka, Y. Tamada, M. Minaba, H. Zhang, P. C. Wang, and Y. Kato. 2008. Anionic C-terminal proregion of nematode antimicrobial peptide cecropin P4 precursor inhibits antimicrobial activity of the mature peptide. Biosci. Biotechnol. Biochem. 72:3281-3284. https://doi.org/10.1271/bbb.80397

Acknowledgement

Supported by : RDA