DOI QR코드

DOI QR Code

Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage

  • Kim, Y.I. (RIBS, Division of Food Bioscience, College of Health and Medical Life Sciences, Konkuk University) ;
  • Oh, Y.K. (National Institute of Animal Science, RDA) ;
  • Park, K.K. (Animal Resource Research Center, Konkuk University) ;
  • Kwak, W.S. (RIBS, Division of Food Bioscience, College of Health and Medical Life Sciences, Konkuk University)
  • Received : 2013.07.25
  • Accepted : 2013.10.24
  • Published : 2014.02.01

Abstract

This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective $NDF_{1.18}$ on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and $NH_3$-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from $10^9$ to $10^8$ cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw.

Keywords

Spent Mushroom Substrate;By-product Feed;Silage;Degradability;Ruminant

Acknowledgement

Grant : Cooperative Research Program for Agriculture Science and Technology Development

Supported by : Rural Development Administration

References

  1. AOAC. 2000. Official methods of analysis, 17th Ed. Association of Official Analytical Chemists, Washington, DC, USA.
  2. Armentano, L. E., T. A. Herrinton, C. E. Polan, A. J. Moe, J. H. Herbein, and P. Umstadt. 1986. Ruminal degradation of dried brewers grains, wet brewers grains and soybean meal. J. Dairy Sci. 69:2124-2133. https://doi.org/10.3168/jds.S0022-0302(86)80644-0
  3. Bae, J. S., Y. I. Kim, S. H. Jung, Y. G. Oh, and W. S. Kwak. 2006. Evaluation on feed-nutritional value of spent mushroom (Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) substrates as a roughage source for ruminants. Korean J. Anim. Sci. Technol. 48:237-246. https://doi.org/10.5187/JAST.2006.48.2.237
  4. Ball, A. S. and A. M. Jackson. 1995. The recovery of lignocellulose degrading enzymes from spent mushroom compost. Bioresour. Technol. 54:311-314. https://doi.org/10.1016/0960-8524(95)00153-0
  5. Barker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-554.
  6. Bonnen, A. M., L. H. Anton, and A. B. Orth. 1994. Lignin degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl. Environ. Microbiol. 60:960-965.
  7. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for the determination of urea and ammonia. Clim. Chem. 8:130-132.
  8. Cho, W. M., B. H. Paek, S. W. Kang, J. S. Kim, and Y. K. Kim. 2001. Effects of dietary supplements of clay minerals on the growth performance and immunity in growing Hanwoo steers. Korean J. Anim. Sci. Technol. 43:203-210.
  9. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  10. Duque, J. A., J. P. Fontenot, K. E. Webb, Jr. and J. C. A. Berger. 1978. Fermentation and digestibility of broiler litter ensiled at different moisture levels by addition of whey or water. Virginia Polytechnic Institute and State University Res. Div. Rep. 174:108.
  11. Erwin, E. S., G. J. Naro, and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  12. Fazaeli, H. and A. R. Talebian Masoodi. 2006. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Aust. J. Anim. Sci. 19:845-851. https://doi.org/10.5713/ajas.2006.845
  13. Fontenot, J. P. 2001. Utilization of poultry litter as feed for beef cattle. FDA Public Hearing on Animal Feeding Regulation, Kansas City, MO, USA.
  14. Gao, L., H. Yang, X. Wang, Z. Huang, M. Ishii, Y. Igarashi, and Z. Cui. 2008. Rice straw fermentation using lactic acid bacteria. Bioresour. Technol. 99:2742-2748. https://doi.org/10.1016/j.biortech.2007.07.001
  15. Goering, H. R. and P. J. Van Soest. 1970. Forage fiber analysis. Handbook 379. US Department of Agriculture, USA.
  16. Kang, S. W., J. S. Kim, W. M. Cho, B. S. Ahn, K. S. Ki, and Y. S. Son. 2002. Effect of domestic clay minerals on growth performance and carcass characteristics in growing-fattening Hanwoo steers. Korean J. Anim. Sci. Technol. 44:327-340. https://doi.org/10.5187/JAST.2002.44.3.327
  17. Kim, Y. I., W. M. Cho, S. K. Hong, Y. K. Oh, and W. S. Kwak. 2011. Yield, nutrient characteristics, ruminal solubility and degradability of spent mushroom (Agaricus bisporus) substrates for ruminants. Asian-Aust. J. Anim. Sci. 24:1560-1568. https://doi.org/10.5713/ajas.2011.11076
  18. Kim, Y. I., S H. Jeong, J. S. Seok, S. Y. Yang, J. W. Huh, and W. S. Kwak. 2008a. Isolation and identification of hydrolytic enzyme-producing bacteria from spent mushroom substrate. Korean J. Anim. Sci. Technol. 50:713-720. https://doi.org/10.5187/JAST.2008.50.5.713
  19. Kim, Y. I., S. H. Jung, J. S. Seok, S. Y. Yang, J. W. Huh, and W. S. Kwak. 2007b. Isolation and identification of high cellulolytic bacteria from spent mushroom substrate and determination of optimal medium conditions for the growth. Kor. J. Microbiol. Biotechnol. 35:255-260.
  20. Kim, Y. I., S. H. Jung, S. Y. Yang, J. W. Huh, and W. S. Kwak. 2007c. Effects of cellulolytic microbes inoculation during deep stacking of spent mushroom substrates on cellulolytic enzyme activity and nutrients utilization by sheep. Korean J. Anim. Sci. Technol. 49:667-676. https://doi.org/10.5187/JAST.2007.49.5.667
  21. Kim, Y. I., J. S. Seok, and W. S. Kwak. 2008b. Effect of mixed microbes addition on chemical change and silage storage of spent mushroom substrates. Korean J. Anim. Sci. Technol. 50:831-838. https://doi.org/10.5187/JAST.2008.50.6.831
  22. Kim, Y. I., J. S. Seok, and W. S. Kwak. 2010. Evaluation of microbially ensiled spent mushroom (Pleurotus osteratus) substrates (bed-type cultivation) as a roughage for ruminants. Korean J. Anim. Sci. Technol. 52:117-124. https://doi.org/10.5187/JAST.2010.52.2.117
  23. Kwak, W. S., S. H. Jung, and Y. I. Kim. 2008. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresour. Technol. 99:2947-2955. https://doi.org/10.1016/j.biortech.2007.06.021
  24. Kwak, W. S., Y. I. Kim, J. S. Seok, Y. K. Oh, and S. M. Lee. 2009. Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresour. Technol. 100:1471-1473. https://doi.org/10.1016/j.biortech.2008.07.066
  25. Lee, K. S., K. Y. Lee, C. S. Oh, D. G. Lee, and Y. J. Kim. 2004. Effect of aeration for the probiotic feed production from food wastes by Lactobacillus acidophilus and Saccharomyces cerevisiae. J. KOWREC. 11:114-119.
  26. Lee, S. M., Y. I. Kim, and W. S. Kwak. 2010a. Effect of by-product mixing silage feeding on the eating and ruminating behavior of Hanwoo steer. J. Korean Grassl. Forage Sci. 30:159-168. https://doi.org/10.5333/KGFS.2010.30.2.159
  27. Lee, S. M., Y. I. Kim, and W. S. Kwak. 2010b. Effects of dietary addition of bentonite on manure gas emission, health, production, and meat characteristics of Hanwoo (Bos Taurus coreanae) steers. Asian-Aust. J. Anim. Sci. 23:1594-1600. https://doi.org/10.5713/ajas.2010.10005
  28. Makela, M., S. Galkin, A. Hatakka, and T. Lundell. 2002. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30:542-549. https://doi.org/10.1016/S0141-0229(02)00012-1
  29. McCaskey, T. A., S. N. Britt, B. G. Ruffin, and J. T. Eason. 1994. Feed value of broiler litter for stocker cattle. Highlights of Alabama Agric. Res. 41:12.
  30. Miller, E. L. 1982. Methods of assessing proteins for ruminants, including laboratory methods. In Protein Contribution of Feedstuffs for Ruminants: Application to Feed Formulation (Ed. E. L. Miller and I. H. Pike). Butterworth Scientific, London, pp. 18-35.
  31. National Institute of Animal Science. 2012. Standard tables of feed composition in Korea. National Institute of Animal Science, RDA, Korea.
  32. National Research Council. 2000. Nutrient requirements of beef cattle. Update of Seventh Revised Edition, 1996. National Academy Press, Washington, DC, USA.
  33. National Research Council. 2001. Nutrient requirements of dairy cattle, 7th Rev. Ed., National Academy Press, Washington, DC, USA.
  34. Nocek, J. E. 1985. Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. J. Anim. Sci. 60:1347-1358.
  35. Orskov, E. R., F. D. Hovell, and F. Mould. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 5:195-213.
  36. Orskov, E. R., M. Hughes-Jones, and M. E. Eliman. 1983. Studies on degradation and outflow rate of protein supplements in the rumen of sheep and cattle. Livest. Prod. Sci. 10:17-24. https://doi.org/10.1016/0301-6226(83)90003-9
  37. Schneider, R. M., J. H. Harrison, and K. A. Loney. 1995. The effects of bacterial inoculants, beet pulp, and propionic acid on ensiled wet brewers grains. J. Dairy Sci. 78:1096-1105. https://doi.org/10.3168/jds.S0022-0302(95)76726-1
  38. Smith, L. W., H. K. Goering, D. R. Waldo, and C. H. Gordon. 1971. In vitro digestion rate of forage cell wall components. J. Dairy Sci. 54:71-76. https://doi.org/10.3168/jds.S0022-0302(71)85780-6
  39. Statistix7. 2000. User's manual. Analytical Software, Tallagassee, FL, USA.
  40. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber, nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  41. Wang, Q., J. Narita, N. Ren, T. Fukushima, Y. Ohsumi, K. Kusano, Y. Shirai, and H. I. Ogawa. 2003. Effect of pH adjustment on preservation of kitchen waste used for producing lactic acid. Water Air Soil Pollut. 144:405-418. https://doi.org/10.1023/A:1022919716627
  42. Weinberg, Z. G., Y. Chen, and P. Weinberg. 2008. Ensiling olive cake with and without molasses for ruminant feeding. Bioresour. Technol. 99:1526-1529. https://doi.org/10.1016/j.biortech.2007.04.022

Cited by

  1. ) on Behavior Pattern of Growing Hanwoo Steers vol.33, pp.4, 2013, https://doi.org/10.5333/KGFS.2013.33.4.290
  2. Effect of By-product Feed-based Silage Feeding on the Performance, Blood Metabolites, and Carcass Characteristics of Hanwoo Steers (a Field Study) vol.28, pp.2, 2014, https://doi.org/10.5713/ajas.14.0443
  3. Effects of by-product feed-based silage on feeding, rumination, and excretion in growing Hanwoo heifers vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-014-0037-x
  4. Effect of feeding a by-product feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0091-7