DOI QR코드

DOI QR Code

How Computed Tomography Contrast Media and Magnetic Resonance Imaging Contrast Media Affect the Changes of Uptake Counts of 201Tl

  • Lee, Jin-Hyeok (Department of Radiology, Korea Veterans Hospital) ;
  • Lee, Hae-Kag (Department of Computer Science and Engineering, Soonchunhyang University) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies) ;
  • Cheon, Miju (Department of Radiology, Korea Veterans Hospital)
  • Received : 2014.10.28
  • Accepted : 2014.12.01
  • Published : 2014.12.31

Abstract

The purpose of the study is to investigate how uptake counts of $^{201}Tl$ of radioisotopes in the human body could change, when taking computed tomography and magnetic resonance imaging right after injecting contrast media. $^{201}Tl$ radioisotope substances of iodine contrast medium, which is a computed tomography contrast medium, and paramagnetic contrast medium, which is an magnetic resonance imaging contrast medium, were used as study materials. First, $^{201}Tl$ was put into 4 cc of normal saline in test tube, and then a computed tomography contrast medium of Iopamidol$^{(R)}$ or Dotarem$^{(R)}$, was put into 2 cc of normal saline in test tube. An magnetic resonance imaging contrast medium of Primovist$^{(R)}$ or Gadovist$^{(R)}$ was also put into 2 cc of normal saline in test tube. Each contrast medium was distributed to make $^{201}Tl$ as 3 mCi, with a total of 4 cc. Gamma camera, low energy high resolution collimator, and pinhole collimator were used to obtain images. The uptake count of $^{201}Tl$ was measured with 1000 frames of images, and obtained after 10 times of repetition. This study revealed that the use of Gadovist$^{(R)}$, which is an magnetic resonance imaging contrast medium, showed the smallest number of uptake count, after measuring $^{201}Tl$ uptake count by low energy high resolution collimator. On the other hand, the use of Iopamidol$^{(R)}$, which is a computed tomography contrast medium, showed the biggest difference in uptake count, when measuring $^{99m}Tc$ uptake count by Pinhole collimator. When examining with gamma camera, using contrast medium and $^{201}Tl$, identifying the changes of uptake count is very important for improving the value of diagnosis.

Acknowledgement

Supported by : Soonchunhyang university

References

  1. E. H. Lee, S. K. Park, K. P. Ko, I. S. Cho, S. H. Chang, H. R. Shin, D. H. Kang, and K. Y. Yoo, Journal of Preventive Medicine and Public Health 43, 151 (2010). https://doi.org/10.3961/jpmph.2010.43.2.151
  2. J. M. Park, Y. H. Choe, S. Chang, Y. M. Sung, S. S. Kang, M. J. Kim, B. K. Han, and S. H. Choi, Korean J. Radiol. 5, 19 (2004). https://doi.org/10.3348/kjr.2004.5.1.19
  3. R. M. Seter, S. E. Fischer, and C. H. Lorenz, J. Magn. Reson. Imaging 12, 430 (2000). https://doi.org/10.1002/1522-2586(200009)12:3<430::AID-JMRI8>3.0.CO;2-V
  4. K. M. Choi, R. J. Kim, G. Gubernikoff, J. D. Vargas, M. Parker, and R. M. Judd, Circulation 104, 1101 (2001). https://doi.org/10.1161/hc3501.096798
  5. M. J. Shin, and Y. J. Cho, J. Korean Med. Assoc. 55, 779 (2012). https://doi.org/10.5124/jkma.2012.55.8.779
  6. K. L. Gould, Am. J. Cardiol. 41, 269 (1978).
  7. K. L. Gould, R. J. Westcott, P. C. Albero, and G. W. Hamilton, Am. J. Cardiol. 41, 279 (1978). https://doi.org/10.1016/0002-9149(78)90166-2
  8. D. Visvikis, D. C. Costa, I. Croasdale, A. H. Lonn, J. Bomanji, and S. Gacinovic, Eur. J. Nucl. Med. Mol. Imaging 30, 344 (2003). https://doi.org/10.1007/s00259-002-1070-4
  9. G. Antoch, L. S. Freudenberg, T. Egelhof, J. Stattaus, W. Jentzen, and J. F. Debatin, J. Nucl. Med. 43, 1339 (2002).
  10. G. S. Hill, and R. S. Clark, Invest. Radiol. 7, 33 (1992).
  11. G. Antoch, L. S. Freudenberg, J. Stattaus, W. Jentzen, S. P. Mueller, and J. F. Debatin, Am. J. Roentgenol. 179, 1555 (2002). https://doi.org/10.2214/ajr.179.6.1791555
  12. P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin, Med. Phys. 25, 2046 (1998). https://doi.org/10.1118/1.598392
  13. D. Visvikis, D. C. Costa, I. Croasdale, A. H. Lonn, J. Bomanji, S. Gacinovic, and P. J. Ell, Eur. J. Nucl. Med. Mol. Imaging 30, 344 (2003). https://doi.org/10.1007/s00259-002-1070-4
  14. G. Antoch, L. S. Freudenberg, T. Egelhof, J. Stattaus, W. Jentzen, J. F. Debatin, and A. Bockisch, J. Nucl. Med. 43, 1339 (2002).
  15. J. H. Kim, J. S. Lee, J. S. Kim, B. I. Lee, S. M. Kim, I. S. Choung, Y. K. Kim, W. W. Lee, S. E. Kim, J. K. Chung, M. C. Lee, and D. S. Lee, Korean Journal of Nuclear Medicine 39, 445 (2005).
  16. M. R. Violante and P. B. Dean, Radiology 134, 237 (1980). https://doi.org/10.1148/radiology.134.1.7350611
  17. G. Antoch, L. S. Freudenberg, T. Beyer, A. Bockisch, and J. F. Debatin, J. Nucl. Med. 45, 56S (2004).

Cited by

  1. Tc on Changes of Computed Tomography Number vol.20, pp.3, 2015, https://doi.org/10.4283/JMAG.2015.20.3.302
  2. Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT vol.21, pp.2, 2016, https://doi.org/10.4283/JMAG.2016.21.2.286
  3. Analysis on Setup Variation According to Megavoltage Computed Tomography System vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.425