DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate)

크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘

  • Park, Young Cho (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Young Sik (Department of Chemical Engineering, Kangwon National University)
  • 박영조 (강원대학교 화학공학과) ;
  • 김영식 (강원대학교 화학공학과)
  • Received : 2014.09.16
  • Accepted : 2014.10.13
  • Published : 2014.12.10

Abstract

Cr(VI)-heterocyclic complex (2,4'-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4'-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (${\varepsilon}$), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4'-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-$CH_3$, m-Br, m-$NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.

Keywords

chromate ester;hydride ion transfer;Hammett reaction constant(${\rho}$);rate-determining step;substituted benzyl alcohol

References

  1. G. P. Panigrahi, Michaelis-Menten Behaviour in the Oxidation of Benzaldehydes by Pyridinium Chlorochromate, Bull. Korean Chem. Soc., 13, 547-550 (1992).
  2. K. K. Banerji, Kinetic Study of the Oxidation of Substituted Benzyl Alcohols by Ethyl Chlorochromate, Bull. Chem. Soc. Japan, 61, 1767-1771 (1988). https://doi.org/10.1246/bcsj.61.1767
  3. J. F. Kuo, Chromium(VI) Complexation with Triisooctylamine in Organic Solvents, Bull. Chem. Soc. Japan, 64, 3059-3062 (1991). https://doi.org/10.1246/bcsj.64.3059
  4. M. K. Mahanti and D. Dey, Kinetics of Oxidation of Substituted Benzyl Alcohols by Quinolinium Dichromate, J. Org. Chem., 55, 5848-5850 (1990). https://doi.org/10.1021/jo00310a015
  5. M. K. Mahanti, Kinetics of Oxidation of Nitrotoluenes by Acidic Hexacyanoferrate (III), Bull. Korean Chem. Soc., 4, 120-123 (1983).
  6. M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, Quinolinium Dichromate Oxidation of Diols: A Kinetics Study, J. Org. Chem., 61, 8875-8877 (1996). https://doi.org/10.1021/jo961079m
  7. H. B. Davis, R. M. Sheets, and W. W. Pandler, High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants, Heterocyc-les, 22, 2029-2035 (1984). https://doi.org/10.3987/R-1984-09-2029
  8. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2322 (1994). https://doi.org/10.1246/bcsj.67.2320
  9. M. R. Pressprich, R, D. Willett, and H. B. Davis, Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form $Cr_nO_{3n+1}^^{2-}$, Inorg. Chem., 27, 260-264 (1988). https://doi.org/10.1021/ic00275a009
  10. M. H. Cho, J. H. Kim, and H. B. Park, Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes, J. Korean Chem. Soc., 33, 366-370 (1989).
  11. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benzaldehyde, J. Phys. Chem., 101, 36-48 (1997). https://doi.org/10.1021/jp961678x
  12. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031
  13. I. S. Koo, J. S. Kim, and S. K. An, Kinetic Studies on Solvolyses of Subsitituted Cinnamoyl Chlorides in Alcohol-Water Mixture, J. Korean Chem. Soc., 43, 527-534 (1999).
  14. R. Tayebee, Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach, J. Korean Chem. Soc., 52, 23-29 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  15. R. Y. Sung, H. Choi, and I. S. Koo, Kinetic Studies on the Nucleophilic Substittution Reaction of 4-X-Subsitituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 30, 1579-1582 (1988).
  16. Y. S. Kim, H. Choi, and I. S. Koo, Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Subsitituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 31, 3279-3282 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279
  17. D. Richard and Gilliom, Physical Organic Chemistry, 169-180 (1992).
  18. M. H. Cho, J. H. Kim, and H. B. Park, Kinetic Study of Macrocyclic Ligand-Metal Ion Complexes, J. Korean Chem. Soc., 33, 366-371 (1989).
  19. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benz aldehyde, J. Phys. Chem., 101, 36-40 (1997). https://doi.org/10.1021/jp961678x
  20. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2324 (1994). https://doi.org/10.1246/bcsj.67.2320
  21. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031