Synthesis of Ru Incorporated TiO2 and Application to Oxidation of Benzyl Alcohol with Molecular Oxygen

Ru를 도입한 TiO2의 합성과 산소를 이용한 알코올 산화반응 연구

  • Kim, Youngyeong (Department of chemistry and RINS, Gyeongsang National University) ;
  • Choi, Myong Yong (Department of chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of chemistry and RINS, Gyeongsang National University)
  • Received : 2014.09.14
  • Accepted : 2014.09.23
  • Published : 2014.12.10


We synthesized $TiO_2$ ($Ru_x/TiO_2$) incorporating $TiO_2$ and Ru via an one-step hydrothermal method. The physical properties were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The prepared samples were applied as a catalyst for the oxidation of benzyl alcohol to benzaldehyde using molecular oxygen ($O_2$). Especially, the catalytic activities increased as the contents of ruthenium in $TiO_2$ increased without the formation of any byproducts.


$TiO_2$;Ruthenium;Catalyst;Hydrothermal method;Alcohol oxidation


Supported by : 한국연구재단


  1. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, $TiO_2$ thin films by a novel sol-gel processing for gas sensor applications, Sens. Actuators, B, 68, 189-196 (2000).
  2. N. K. Anand and E. M. Carreira, A simple, mild, catalytic, enantioselective addition of terminal acetylenes to aldehydes, J. Am. Chem. Soc., 123, 9687-9688 (2001).
  3. A. B. Northrup and D. W. C. MacMillan, The first direct and enantioselective cross-aldol reaction of aldehydes, J. Am. Chem. Soc., 124, 6798-6799 (2002).
  4. Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, and A. Fujishima, Degradation of bisphenol A in water by $TiO_2$ photocatalyst, Environ. Sci. Technol., 35, 2365-2368 (2001).
  5. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, Electrical and optical properties of $TiO_2$ anatase thin films, J. Appl. Phys., 75, 2042-2047 (1994).
  6. M. Triki, D. P. Minh, Z. Ksibi, A. Ghorbel, and M. Besson, Ruthenium catalysts supported on $TiO_2$ prepared by sol-gel way for p-hydroxybenzoic acid wet air oxidation, J. Sol-Gel Sci. Technol., 48, 344-349 (2008).
  7. J. Arana, O. Gonzalez Diaz, M. Miranda Saracho, J. M. Doa Rodriguez, J. A. Herrera Melian, and J. Perez Pea, Photocatalytic degradation of formic acid using Fe/$TiO_2$ catalysts: The role of $Fe^{3+}/Fe^{2+}$ ions in the degradation mechanism. Appl. Catal. B, 32, 49-61 (2001).
  8. F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta, Au/$TiO_2$ nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation, J. Catal., 202, 256-267 (2001).
  9. R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative methods for the preparation of gold nanoparticles supported on $TiO_2$, J. Phys. Chem. B, 106, 7634-7642 (2002).
  10. Y. Cong, J. Zhang, F. Chen, and M. Anpo, Synthesis and characterization of nitrogen-doped $TiO_2$ nanophotocatalyst with high visible light activity, J. Phys. Chem. C, 111, 6976-6982 (2007).
  11. J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline $TiO_2$ powders, Chem. Mater., 14, 3808-3816 (2002).
  12. G. Li, L. Li, J. Boerio-Goates, and B. F. Woodfield, High purity anatase $TiO_2$ nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry, J. Am. Chem. Soc., 127, 8659-8666 (2005).
  13. S. J. Kim, S. D. Park, Y. H. Jeong, and S. Park, Homogeneous precipitation of $TiO_2$ ultrafine powders from aqueous $TiOCl_2$ solution, J. Am. Ceram. Soc., 82, 927-932 (1999).