DOI QR코드

DOI QR Code

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels

과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Kim, Hyungjin (Department of Health & Environment, Kimpo College)
  • Received : 2014.09.16
  • Accepted : 2014.10.22
  • Published : 2014.12.10

Abstract

The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Keywords

Acid hydrolysis;Enzymatic saccharification;Cellulosic ethanol;Viscozyme

References

  1. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Bio-ethanol-the fuel of tomorrow from the residues of today, Trends Biotechnol., 24, 549-556 (2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  2. D. H. Lim, Bio-ethanol: Requirement and prospect for market expansion, KISTI Market Report, 3, 19-23 (2013).
  3. A. Demirbas, Progress and recent trends in biofuels, Prog. Energ. Combust., 33, 1-18 (2007). https://doi.org/10.1016/j.pecs.2006.06.001
  4. B. C. Saha and M. A. Cotta, Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw, Biotechnol. Progr., 22, 449-453 (2006). https://doi.org/10.1021/bp050310r
  5. S. M. Lee and J. H. Lee, Organic acid and enzyme pretreatment of Laminaria japonica for bio-ethanol production, Appl. Chem. Eng., 23, 164-168 (2012).
  6. S. K. Han, H. S. Shin, S. H. Kim, and H. W. Kim, Effect of waste components on performance of acidogenic fermenter, J. KORRA, 10, 65-70 (2002).
  7. J. C. Lee, J. H. Kim, H. S. Park, and D. W. Pak, Bioethanol production using batch reactor from food wastes, J. Korean Soc. Environ. Eng., 32, 609-614 (2010).
  8. S. J. Park, Y. H. Do, J. S. Choi, Y. H. Yoon, and I. S. Cha, A Study on bio-ethanol production from fruit wastes, Trans. Kor. Hydrog. New Energy Soc., 20, 142-150 (2009).
  9. N. J. Lee, H. S. Kim, I. S. Cha, and J. S. Choi, A study on characteristic of the bio-ethanol produced on fruit wastes for direct ethanol fuel cell(DEFC), Trans. Kor. Hydrog. New Energy Soc., 22, 257-264 (2011).
  10. H. J. Han, H. Li, and S. J. Kim, Ethanol production by synchronous saccharification and fermentation using food wastes, Korean J. Biotechnol. Bioeng., 21, 474-478 (2006).
  11. R. Harun, W. S. Y. Jason, T. Cherrington, and M. K. Danquah, Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energ., 88, 3464-3467 (2011). https://doi.org/10.1016/j.apenergy.2010.10.048
  12. Y. Xue, H. Jameel, R. Phillips, and H. M. Chang, Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production, J. Ind. Eng. Chem., 18, 707-714 (2012). https://doi.org/10.1016/j.jiec.2011.11.132
  13. R. Halim, R. Harun, M. K. Danquah, and P. A. Webley, Microalgal cell disruption for biofuel development, Appl. Energ., 91, 116-121 (2012). https://doi.org/10.1016/j.apenergy.2011.08.048
  14. J. Y. Lee, C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh, Comparison of several methods for effective lipid extraction from microalgae, Bioresour. Technol., 101, S75-S77 (2010). https://doi.org/10.1016/j.biortech.2009.03.058
  15. J. R. Miranda, P. C. Passarinho, and L. Gouveia, Pre-treatment optimization of scenedesmus obliquus microalga for bioethanol production, Bioresour. Technol., 104, 342-348 (2012). https://doi.org/10.1016/j.biortech.2011.10.059
  16. R. Harun and M. K. Danquah, Influence of acid pre-treatment on microalgal biomass for bioethanol production, Process Biochem., 46, 304-309 (2011). https://doi.org/10.1016/j.procbio.2010.08.027
  17. S. C. Rabelo, R. M. Filho, and A. C. Costa, Lime pretreatment of sugarcane bagasse for ethanol production, Appl. Biochem. Biotechnol., 153, 139-150 (2009). https://doi.org/10.1007/s12010-008-8433-7
  18. B. Zhang, A. Shahbazi, and L. Wang, Alkali pretreatment and enzymatic hydrolysis of cattails from constructed wetlands, Am. J. Eng. Appl. Sci., 3, 328-332 (2010). https://doi.org/10.3844/ajeassp.2010.328.332
  19. A. M. J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P. M. Sanders, Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw, Biochem. Eng. J., 46, 126-131 (2009). https://doi.org/10.1016/j.bej.2009.04.020
  20. H. S. Kim, N. J. Lee, K. M. Kang, J. I. Cho, I. S Cha, Y. H. Yoon, and J. S. Choi, A study on pretreated of fruit wastes for bio-ethanol production, Proceedings of Spring Conference on the Korea Society for Energy Engineering, April 29-30, Daejeon, Korea (2010).
  21. J. M. Choi, S. S. Choi, and S. H. Yeom, Bioethanol production from wasted corn stalk from Gangwon province : from enzymatic hydrolysis to fermentation, Appl. Chem. Eng., 23, 326-332 (2012).

Cited by

  1. Design of Pretreatment Process in Cellulosic Ethanol Production vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1069