Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide

암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성

  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Yun, Kug Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 박미선 (충남대학교 대학원 바이오응용화학과) ;
  • 윤국진 (충남대학교 대학원 바이오응용화학과) ;
  • 이영석 (충남대학교 대학원 바이오응용화학과)
  • Received : 2014.09.12
  • Accepted : 2014.09.29
  • Published : 2014.12.10


In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.


Supported by : 충남대학교


  1. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007).
  2. J. I. Lee and H. T. Jung, Technical status of carbon nanotubes composites, Korean Chem. Eng. Res., 46, 7-14 (2008).
  3. D. Y. Kim, K. J. Yun, and Y. S. Lee, Electromagnetic interference shielding characteristics of electroless nickel plated carbon nanotubes, Appl. Chem. Eng., 25, 268-273 (2014).
  4. H. He, J. Klinowski, M. Foster, and A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett., 287, 53-56 (1998).
  5. J. Yang, M. Wu, F. Chen, Z. Fei, and M. Zhong, Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene, J. supercritical fluids, 56, 201-207 (2011).
  6. S. Park, History of graphene oxide and future direction, Prospectives of industrial chemistry, 16, 1-5 (2013).
  7. Y. Kim, S. Cho, S. K. Park, J. D. Jeon, and Y. S. Lee, Electrochemical properties of carbon felt electrode for vanadium redox flow batteries by liquid ammonia treatment, Appl. Chem. Eng., 25, 292-299 (2014).
  8. G. Yang, H. Chena, H. Qin, and Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci., 293, 299-305 (2014).
  9. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
  10. T. M. Byrne, X. Gu, P. Hou, F. S. Cannon, N. R. Brown, and C. Nieto-Delgado, Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration, Carbon, 73, 1-12 (2014).
  11. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011).
  12. J. H. Kim, S. Cho, T. S. Bae, and Y. S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sens. Actuators B, 197, 20-27 (2014).
  13. B. Stohr, H. P. Boehm, and R. Schlogl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, 29, 707-720 (1991).
  14. H. P. Boehm, G. Mair, T. Stoehr, A. R. De Rincon, and B. Tereczki, Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions, Fuel, 63, 1061-1063 (1984).
  15. S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, N. M. Huang, H. M. Neoh, H. N. Lim, R. Jamal, and R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method, Nanoscale Res. Lett., 7, 541-547 (2012).
  16. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57 (2007).
  17. H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83 2427-2433 (2007).
  18. H. Zhang, T. Kuila, N. H. Kim, D. S. Yu, and J. H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials, Carbon, 69, 66-78 (2014).
  19. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401-187405 (2006).
  20. B. K. Saikia, R. K. Boruah, and P. K. Gogoi, A X-ray diffraction analysis on graphene layers of Assam coal, J. Chem. Sci., 121, 103-106 (2009).
  21. E. Jeong, M. J. Jung, and Y. S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluorine Chem., 150, 98-103 (2013).
  22. C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma-activated transport reactions from a solid carbon source, Appl. Phys. A, 69, 241-244 (1999).
  23. B. C. Bai, S. Cho, H. R. Yu, K. B. Yi, K. D. Kim, and Y. S. Lee, Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2/CH_4$ separation, J. Ind. Eng. Chem., 19, 776-783 (2013).
  24. P. H. Matter, L. Zhang, and U. S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal., 239, 83-96 (2006).
  25. R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 40, 4891-4893 (2008).
  26. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33, 1641-1653 (1995).
  27. M. Seredych, D. H. Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008).
  28. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, J. Ind. Eng. Chem, 18, 116-122 (2012).
  29. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, Jun Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010).

Cited by

  1. Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes vol.26, pp.1, 2015,