DOI QR코드

DOI QR Code

Electrostatic Interaction between Mercaptoundecanoic-acid Layers on Gold and ZrO2 Surfaces

금 표면 위의 메르캡토언데카노익산층 표면과 이산화지르코늄 표면 사이의 정전기적 상호작용

  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology Seoul National University of Science and Technology)
  • 박진원 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Received : 2014.09.03
  • Accepted : 2014.09.30
  • Published : 2014.12.10

Abstract

The physical properties of mercaptoundecanoic-acid layer formed on gold surfaces, which may affect the distribution of either gold particles adsorbed to the zirconium dioxide surface or vice versa, were investigated. To conduct this investigation, the surface forces were measured between the surfaces with respect to the salt concentration and pH value using atomic force microscope (AFM). The forces were quantitatively converted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface potential and charge density of surfaces. The converted-value dependence on the salt concentration and pH was described with the law of mass action, and the dependence was consistent with the theoretical prediction. It was found that the mercaptoundecanoic-acid layer had higher values for the surface charge densities and potentials than the $ZrO_2$ surfaces, which may be attributed to the ionized-functional-groups of the mercaptoundecanoic-acid layer.

Keywords

Mercaptoundecanoic-acid;Gold surface;Zirconium dioxide surface;AFM;DLVO theory

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. C.-M. Wang, K.-N. Fan, and Z.-P. Liu, Origin of Oxide Sensitivity in Gold-Based Catalysts: A First Principle Study of CO Oxidation over Au Supported on Monoclinic and Tetragonal $ZrO_2$, J. Am. Chem. Soc., 129, 2642-2647 (2007). https://doi.org/10.1021/ja067510z
  2. D. M. Soolaman and H.-Z. Yu, Monolayer-directed electrodeposition of oxide thin films: surface morphology versus chemical modification, J. Phys. Chem. C, 111, 14157-14164 (2007). https://doi.org/10.1021/jp071290+
  3. A. Hugon, L. Delannoy, and C. Louis, Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes, Gold Bull., 41, 127-138 (2008). https://doi.org/10.1007/BF03216590
  4. X. Zhang, H. Shi, and B.-Q. Xu, Vital roles of hydroxyl groups and gold oxidation states in Au/$ZrO_2$ catalysts for 1,3-butadiene hydrogenation, J. Catal., 279, 75-87 (2011). https://doi.org/10.1016/j.jcat.2011.01.002
  5. H. H. Kwak, G. Y. Han, J. W. Bae, and K. J. Yoon, Tungsten oxides supported on nano-size zirconia for cyclic production of syngas and hydrogen by redox operations, Korean J. Chem. Eng., 1000, 1-11 (2014).
  6. M.-Y. Kim, G. Seo, J.-H. Park, C.-H. Shin, and E. S. Kim, Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas, Korean Chem. Eng. Res., 49, 1-9 (2011). https://doi.org/10.9713/kcer.2011.49.1.001
  7. S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution, J. Am. Chem. Soc., 126, 1199-1205 (2004). https://doi.org/10.1021/ja036352y
  8. X. Zhang, H. Wang, and B. Q. Xu, Remarkable nanosize effect of zirconia in Au/$ZrO_2$ catalyst for CO oxidation, J. Phys. Chem. B, 109, 9678-9683 (2005). https://doi.org/10.1021/jp050645r
  9. P. V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, J. Phys. Chem. C, 111, 2834-2860 (2007). https://doi.org/10.1021/jp066952u
  10. G. Schmid, Large clusters and colloids. Metals in the embryonic state, Chem. Rev., 92, 1709-1727 (1992). https://doi.org/10.1021/cr00016a002
  11. M. Valden, X. Lai, and D. W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties, Science, 281, 1647-1650 (1998). https://doi.org/10.1126/science.281.5383.1647
  12. H. Sakurai, S. Tsubota, and M. Haruta, Hydrogenation of $CO_2$ over gold supported on metal oxides, Appl. Catal. A-General, 102, 125-136 (1993). https://doi.org/10.1016/0926-860X(93)80224-E
  13. X. Li, J. Fu, M. Steinhart, D. H. Kim, and W. Knoll, Au/titania composite nanoparticle arrays with controlled size and spacing by organic-inorganic nanohybridization in thin film block copolymer templates", Bull. Korean Chem. Soc., 28, 1015-1020 (2007). https://doi.org/10.5012/bkcs.2007.28.6.1015
  14. J. Noh, H. Park, Y. Jeong, and S. Kwon, Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111), Bull. Korean Chem. Soc., 27, 403-406 (2006). https://doi.org/10.5012/bkcs.2006.27.3.403
  15. M. Dasog and R. W. J. Scott, Understanding the Oxidative stability of Au MPCs in the presence of halide ions under ambient conditions, Langmuir, 12, 3381-3387 (2007).
  16. N. Sandhyarani and T. Pradeep, Oxidation of alkanethiol monolayers on gold cluster surface, Chem. Phys. Lett., 338, 33-36 (2001). https://doi.org/10.1016/S0009-2614(01)00230-5
  17. N. J. Brewer, R. E. Rawsterne, S. Kothari, and G. J. Leggett, Oxidation of Self-assembled Monolayers by UV Light with a Wavelength 254 nm, J. Am. Chem. Soc., 123, 4089-4090 (2001). https://doi.org/10.1021/ja0155074
  18. G. Binnig, C. Quate, and G. Gerber, Atomic Force Microscope, Phys. Rev. Lett., 56, 930-933 (1986). https://doi.org/10.1103/PhysRevLett.56.930
  19. B. V. Derjaguin and L. Landau, The Theory of Stability of Highly Charged Lyophobic Sols and Coalescence of Highly Charged Particles in Electrolyte Solutions, Acta Physiochem. URSS, 14(11), 633-652 (1941).
  20. V. E. Shubin and P. Kekicheff, Electrical Double-layer Structure Revisited Via a Surface Force Apparatus-Mica Interfaces In Lithium-nitrate Solutions, J. Colloid Interface Sci., 155(1), 108-123 (1993). https://doi.org/10.1006/jcis.1993.1016
  21. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy, Rev. Sci. Instrum., 64(2), 403-405 (1993). https://doi.org/10.1063/1.1144209
  22. B. Derjaguin, On the Repulsive Forces Between Charged Colloid Particles and on the Theory of Slow Coagulation and Stability of Lyophobe Sols, Trans. Faraday Soc., 35(3), 203-214 (1940). https://doi.org/10.1039/tf9403500203
  23. J. N. Israelachvili and G. E. Adams, Measurement of Forces Between 2 Mica Surfaces in Aqueous-electrolyte Solutions in Range 0-100 nm, J. Chem. Soc. Faraday Trans., 74, 975-1001 (1978). https://doi.org/10.1039/f19787400975
  24. J. L. Parker and H. K. Christenson, Measurements of the Forces Between a Metal-surface and Mica Across Liquids, J. Chem. Phys., 88(12), 8013-8014 (1988). https://doi.org/10.1063/1.454260
  25. S. J. O'Shea, M. E. Welland, and J. B. Pethica, Atomic-force microscopy of local compliance at solid-liquid interfaces, Chem. Phys. Lett., 223(4), 336-340 (1994). https://doi.org/10.1016/0009-2614(94)00458-7
  26. B. V. Derjaguin, Analysis of friction and adhesion IV. The theory of the adhesion of small particles, Kolloid Z., 69(2), 155-164 (1934). https://doi.org/10.1007/BF01433225
  27. U. Hartmann, Van der Waals interactions between sharp probes and flat sample surfaces, Phys. Rev. B, 43(3), 2404-2407 (1991). https://doi.org/10.1103/PhysRevB.43.2404
  28. J. N. Israelachivili, Intermolecular & Surface Forces, 183-192, Academic Press, New York, USA (1991).
  29. H. Shin, M. Agarwal, M. R. de Guire, and A. H. Heuer, Deposition mechanism of oxide thin films on self-assembled organic monolayers, Acta Mater., 46, 801-815 (1998). https://doi.org/10.1016/S1359-6454(97)00258-9
  30. D. Y. C. Chan, R. M. Pashley, and L. R. White, A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte, J. Colloid Interface Sci., 77(1), 283-285 (1980). https://doi.org/10.1016/0021-9797(80)90445-2
  31. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, 51-63, Elsevier, New York, USA (1948).
  32. R. Hogg, T. W. Healy, and D. W. Fuersten, Mutual coagulation of colloidal dispersions, Trans. Faraday Soc., 62(522P), 1638-1651 (1966). https://doi.org/10.1039/tf9666201638
  33. R. J. Hunter, Foundations of Colloid Science, 396-417, Oxford University Press, Oxford, U.K. (1987).
  34. J. L. Parker, Surface force measurements in surfactant systems, Prog. Surf. Sci., 47(3), 205-271 (1994). https://doi.org/10.1016/0079-6816(94)90019-1
  35. J.-W. Park and D. J. Ahn, Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers, Colloids & Surf. B: Biointerfaces, 62(1), 157-161 (2008). https://doi.org/10.1016/j.colsurfb.2007.09.020
  36. W. A. Ducker, T. J. Senden, and R. M. Pashley, Direct measurement of colloidal forces using an atomic-force microscope, Nature, 353(6341), 239-241 (1991). https://doi.org/10.1038/353239a0
  37. R. G. Horn, D. T. Smith, and W. Haller, Surface forces and viscosity of water measured between silica sheets, Chem. Phys. Lett., 162(4-5), 404-408 (1989). https://doi.org/10.1016/0009-2614(89)87066-6
  38. J. Y. Choi and D. K. Kim, Preparation of Monodisperse and Spherical Powders by Heating of Alcohol-Aqueous Salt Solution, J. Sol-Gel Sci. and Tech., 15, 231-241 (1999). https://doi.org/10.1023/A:1008737008988
  39. M. Schultz, St. Grimm, and W. Burckhardt, The isoelectric point of pure and doped zirconia in relation to the preparation route, Solid States Ionics, 63-65, 18-24 (1993). https://doi.org/10.1016/0167-2738(93)90080-M
  40. R. M. Pashley, DLVO and hydration forces between mica surfaces in $Li^+,\;Na^+,\;K^+$, and $Cs^+$ electrolyte solution: A correlation of double-layer and hydration forces with surface cation-exchange properties, J. Colloid Interface Sci., 83(2), 531-546 (1981). https://doi.org/10.1016/0021-9797(81)90348-9