Formation of Polypropylene Thin Films with Superhydrophobic Surface

초소수성 표면특성을 갖는 폴리프로필렌 박막형성

  • Park, Jae Nam (Department of Chemical Engineering, Kangwon National University) ;
  • Shin, Young Sik (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • 박재남 (강원대학교 화학공학과) ;
  • 신영식 (강원대학교 화학공학과) ;
  • 이원규 (강원대학교 화학공학과)
  • Received : 2014.08.28
  • Accepted : 2014.10.21
  • Published : 2014.12.10


The effects of process parameters for the formation of polypropylene film such as the polypropylene concentration in the solution, drying temperature for coating film, and variation of nano-silica content on the surface structure and property of polypropylene film have been studied. A super-hydrophobic polypropylene film with a maximum contact angle of $154^{\circ}$ was obtained at the condition of a polypropylene concentration of 30 mg/mL, a drying temperature of $30^{\circ}C$, a drying pressure of 93 mtorr for 90 min. The increase of a drying temperature reduced the contact angle by enhancing the surface smoothness of the film. The increase of nano-silica content in the composite film composed of polypropylene and silica changed the surface shape from microporous to microglobular, which led to increasing the contact angle and showed the super-hydrophobic surface property.


Supported by : 강원대학교


  1. L. Jiang, R. Wang, B. Yang, T. J. Li, D. A. Tryk, A. Fujishima, K. Hashimoto, and D. B. Zhu, Binary cooperative complementary nanoscale interfacial materials, Pure Appl. Chem., 72, 73-82 (2000).
  2. A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate, Adv. Mater., 11, 1365-1368 (1999).<1365::AID-ADMA1365>3.0.CO;2-F
  3. T. Sun, L. Feng, X. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 38, 644-652 (2005).
  4. K. Liu and L. Jiang, Bio-inspired design of multiscale structures for function integration, Nanotoday, 6, 155-175 (2011).
  5. I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011).
  6. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, The lowest surface free energy based on $-CF_3$ alignment, Langmuir, 15, 4321-4323 (1999).
  7. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988-994 (1936).
  8. A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944).
  9. S. Sakka, Current sol-gel activities in Japan, J. Sol-Gel Sci. Techn., 37, 135-140 (2006).
  10. A. B. Gurav, S. S. Latthe, C. Kappenstein, S. K. Mukherjee, A. V. Rao, and R. S. Vhatkar, Porous water repellent silica coatings on glass by sol gel method, Porous Mater., 18, 361-367 (2011).
  11. H. H. Son, J. N. Park, and W. G. Lee, Hydrophobic properties of films grown by torch-type atmospheric pressure plasma in Ar ambient containing C6 hydrocarbon precursor, Korean J. Chem. Eng., 30, 1480-1484 (2013).
  12. T. I. Kim, C. H. Baek, K. Y. Suh, S. M. Seo, and H. H. Lee, Optical lithography with printed metal mask and a simple superhydrophobic surface, Small, 4, 182-185 (2008).
  13. Y. C. Jung and B. Bhushan, Mechanically durable carbon nanotube- composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag, ACS Nano, 3, 4155-4163 (2009).
  14. J. Troger, K. Lunkwitz, and W. Burger, Determination of the surface tension of microporous membranes using contact angle measurements, J. Colloid Interface Sci., 194, 281-286 (1997).
  15. X. Lu, J. Zhang, and Y. Han, Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures, Macromol. Rapid Commun., 26, 637-642 (2005).
  16. H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Transformation of a simple plastic into a superhydrophobic surface, Nature, 299, 1377-1380 (2003).
  17. Y. Lv, X. Yu, J. Jia, S. Tu, J. Yan, and E Dahlquist, Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide adsorption, Applied Energy, 90, 167-174 (2012).
  18. N. Gao, Y. Y. Yan, X. Y. Chen, and D. J. Mee, Superhydrophobic surfaces with hierarchical structure, Materials Letters, 65, 2902-2905 (2011).

Cited by

  1. Development of non-fluorine superhydrophobic textiles using polypropylene resins pp.1746-7748, 2019,