DOI QR코드

DOI QR Code

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2

리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성

  • Received : 2014.08.14
  • Accepted : 2014.09.16
  • Published : 2014.12.10

Abstract

The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.

Keywords

Lithium ion battery;Anode material;Graphite;Silicon Oxide;Surface modification

Acknowledgement

Supported by : 충북대학교

References

  1. B. Fuchsbichler, C. Stangl, H. Krenc, F. Uhlig, and S. Koller, High capacity graphite-silicon composite anode material for lithium- ion batteries, J. Power Sources, 196, 2889-2892 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.081
  2. C. H. Doh, B. S. Jin, J. H. Lim, and S. I. Moon, Electrochemical Characteristics of Lithium Transition-Metal Oxide as an Anode Material in a Lithium Secondary Battery, Korean J. Chem. Eng., 19, 749-755 (2002). https://doi.org/10.1007/BF02706963
  3. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Recent progress in advanced materials for lithium ion batteries, Mater. Sci. Eng., 73, 51-65 (2012). https://doi.org/10.1016/j.mser.2012.05.003
  4. W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13-24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  5. L. J. Fu, K. Endo, K. Sekine, T. Takamura, Y. P. Wua, and H. Q. Wu, Studies on capacity fading mechanism of graphite anode for Li-ion battery, J. Power Sources, 162, 663-666 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.108
  6. B. Li, M. Xu, B. Li, Y. Liu, L. Yanga, W. Li, and S. Hu, Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries, Electrochim. Acta, 105, 1-6 (2013). https://doi.org/10.1016/j.electacta.2013.04.142
  7. L. Yao, X. Hou, S. Hu, X. Tang, X. Liu, and Q. Ru, An excellent performance anode of $ZnFe_2O_4$/flake graphite composite for lithium ion battery, J. Alloy. Compd, 585, 398-403 (2014). https://doi.org/10.1016/j.jallcom.2013.09.066
  8. H. Zhao, J. Ren., X. He, J. Li, C. Jiang, and C. Wan, Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries, Electrochim. Acta, 52, 6006-6011 (2007). https://doi.org/10.1016/j.electacta.2007.03.050
  9. K. Guo, Q. Pan, and S. Fang, Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries, J. Power Sources, 111, 350-356 (2002). https://doi.org/10.1016/S0378-7753(02)00347-6
  10. M. L. Lee, Y. H. Li, S. C. Liao, J. M. Chen, J. W. Yeh, and H. C. Shih, $Li_4Ti_5O_{12}$-coated graphite anode materials for lithium-ion batteries, Electrochim. Acta, 112, 529-534 (2013). https://doi.org/10.1016/j.electacta.2013.08.150
  11. H. J. Guo, X. H. Li, J. Xie, Z. X. Wang, W. J. Peng, and Q. M. Sun, Effects of Ni substitution on the properties of $Co_3O_4$/graphite composites as anode of lithium ion batteries, Energ. Convers. Manage., 51, 247-252 (2010). https://doi.org/10.1016/j.enconman.2009.09.013
  12. J. Zhang, H. Cao, X. Tang, W. Fan, G. Peng, and M. Qu, Graphite/graphene oxide composite as high capacity and binder- free anode material for lithium ion batteries, J. Power Sources, 241, 619-626 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.001
  13. L. Z. Bai, D. L. Zhao, T. M. Zhang, W. G. Xie, and J. M. Zhang, A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries, Electrochim. Acta, 107, 555-561 (2013). https://doi.org/10.1016/j.electacta.2013.06.032
  14. M. Su, Z. Wang, H. Guo, X. Li, S. Huang, W. Xiao, and L. Gan, Enhancement of the Cycle ability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries, Electrochim. Acta, 116, 230-236 (2014). https://doi.org/10.1016/j.electacta.2013.10.195
  15. Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-coated $SiO_2$ nano-particles as anode material for lithium ion batteries, J. Power Sources, 196, 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  16. D. Arumugam and G. Paruthimal Kalaignan, Synthesis and electrochemical characterizations of Nano-$SiO_2$-coated $LiMn_2O_4$ athode materials for rechargeable lithium batteries, J. Electroanal. Chem., 624, 197-204 (2008). https://doi.org/10.1016/j.jelechem.2008.09.007
  17. Q. Sun, B. Zhang, and Z. W. Fu, Lithium electrochemistry of $SiO_2$ thin film electrode for lithium-ion batteries, Appl. Surf. Sci., 254, 3774-3779 (2008). https://doi.org/10.1016/j.apsusc.2007.11.058
  18. Y. Yu, J. L. Shui, Y. Jin, and C. H. Chen, Electrochemical performance of nano-$SiO_2$ modified $LiCoO_2$ thin films fabricated by electrostatic spray deposition (ESD), Electrochim. Acta, 51, 3292-3296 (2006). https://doi.org/10.1016/j.electacta.2005.09.021
  19. H. Y. Wang and F. M. Wang, Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode, J. Power Sources, 233, 1-5 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.134
  20. Z. Jian, H. Liu, J. Kuang, Y. He, L. Shi, and H. Xiao, Natural flake graphite modified by mild oxidation and carbon coating treatment as anode material for lithium ion batteries, Procedia Engineering, 27, 55-62 (2012). https://doi.org/10.1016/j.proeng.2011.12.424
  21. Y. Fan, J. Wang, Z. Tang, W. He, and J. Zhang, Effects of the nano-structured $SiO_2$ coating on the performance of $LiNi_{0.5}Mn_{1.5}O_4$ cathode materials for high-voltage Li-ion batteries, Electrochim. Acta, 52, 3870-3875 (2007). https://doi.org/10.1016/j.electacta.2006.10.063
  22. Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Improving the cycling stability of $LiCoO_2$ at 4.5 V through surface modification by $Fe_2O_3$ coating, J. Power Sources, 196, 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  23. H. Y. Wang and F. M. Wang, Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode, J. Power Sources, 233, 1-5 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.134

Cited by

  1. Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1056
  2. Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1055