Characteristics of Zirconia Nanoparticles with Hydrothermal Synthesis Process

수열합성법으로 제조된 지르코니아의 나노분말 특성

  • Cho, Chi Wook (School of Chemical Engineering, University of Ulsan) ;
  • Tai, Weon Pil (Fine Chemical and Material Technical Institute, Ulsan Technopark) ;
  • Lee, Hak Sung (School of Chemical Engineering, University of Ulsan)
  • 조치욱 (울산대학교 화학공학부) ;
  • 태원필 (울산테크노파크 정밀화학소재기술연구소) ;
  • 이학성 (울산대학교 화학공학부)
  • Received : 2014.06.06
  • Accepted : 2014.09.15
  • Published : 2014.12.10


Zirconia nanoparticles were synthesized by hydrothermal process, and experimental parameters such as reaction temperature, reaction time, kind and concentration of precipitator, kind of precursor were varied. Particle sizes and crystalline phases of each synthesized nanoparticles were analyzed with X-ray diffraction and FE-scanning electron microscope (SEM). The particle size and crystallization of zirconia increased with increasing concentration of precipitator. The growth rate of particle sizes when NaOH as a precipitator was used also increased more than that of KOH. Therefore, the use of KOH rather than NaOH was more effective in the control of particle sizes. An amorphous zirconia nanoparticle was found in 4 h of hydrothermal reaction, but the monoclinic zirconia nanoparticle was found in 8 h and over of hydrothermal reaction, and the width of nanoparticles was slightly slimmed and the length of nanoparticles was slightly extended with increasing reaction time. The smallest particle size was produced at the same synthesis condition when zirconium chloride among the precursors such as zirconium (IV) acetate, zirconium nitrate and zirconium chloride was used.


  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P, Etienne, G. Creuzet, A. Fridederich, and J. Chazelas, Giant magnetoresistance of Fe/Cr magnetic superlattices, Phys. Rev. Lett., 61, 2472-2475 (1988).
  2. R. Jossen, R. Mueller, S. E. Pratsinis, M. Watson, and K. Akhtar, Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles, Nanotechnol., 16, 609-617 (2005).
  3. L. Schultz, J. Wecker, and E. Hellstern, Formation and properties of NdFeB prepared by mechanical alloying and solid state reaction, J. Appl. Phys., 61, 3583-3585 (1987).
  4. L. Schultz, K. Schnitzke, and J. Wecker, Preparation and properties of mechanically alloyed rare earth permanent magnets, J. Magn. Mater., 80, 115-118 (1989).
  5. T. Schmidt, M. Mennig, and H. Schmidt, New method for the preparation and stabilization of nanoparticulate $t-ZrO_2$ by a combined Sol-Gel and solvothermal process, J. Am. Ceram. Soc., 90, 1401-1405 (2007).
  6. A. R. Pebler, Preparation of small particle stabilized zirconia by aerosol pyrolysis, J. Mater. Res., 5, 680-682 (1990).
  7. J. Kaspar and P. Fornasiero, Nanostructured materials for advanced automotive de-pollution catalysts, J. Solid State Chem., 171, 19-29 (2003).
  8. Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, and O. Yamamoto, From rare earth doped zirconia to 1 kW solid oxide fuel cell system, J. Alloy. Comp., 408, 518-524 (2006).
  9. J. H. Lee, Review on zirconia air-fuel ratio sensors for automotive applications, J. Mater. Sci., 38, 4247-4257 (2003).
  10. G. M. Wolten, Diffusionless phase transformations in zirconia and hafnia, J. Am. Ceram. Soc., 46, 418-422 (1963).
  11. C. J. Brinker and G. W. Scherer, Sol-Gel Science, The physics and chemistry of sol-gel processing, 1, 5-10, Academic press, Inc., San Diego, USA (1990).
  12. W. Pyda, K. Haberko, and M. M. Bulko, Hydrothermal crystallization of zirconia and zirconia solid solutions, J. Am. Ceram. Soc., 74, 2622-2629 (1991).
  13. Y. T. Moon, D. K. Kim, and C. H. Kim, Preparation of monodisperse $ZrO_2$ by the microwave heating of zirconyl chloride solutions, J. Am. Ceram. Soc., 78, 1103-1106 (1995).
  14. C. Li, I. Yamai, Y. Murase, and E. Kato, Formation of acicular monoclinic zirconia particles under hydrothermal conditions, J. Am. Ceram. Soc., 72, 1479-1482 (1989).
  15. H. Cheng, L. Wu, J. Ma, Z. Zhang, and L. Qi, The effects of pH and alkaline earth ions on the formation of nanosized zirconia phases under hydrothermal conditions, J. Eur. Ceram. Soc., 19, 1675-1681 (1999).
  16. H. Kumazawa, T. Inoue, and E. Sada, Synthesis of fine spherical zirconia particles by controlled hydrolysis of zirconium alkoxide in the high temperature range above 50, Chem. Eng. J., 55, 93-96 (1994).
  17. M. Dechamps, B. Djuricic, and S. Pickering, Structure of zirconia prepared by homogeneous precipitation, J. Am. Ceram. Soc., 78, 2873-2880 (1995).
  18. K. Matsui, H. Suzuki, M. Ohgai, and H. Arashi, Raman spectroscopic studies on the formation mechanism of hydrous-zirconia fine particles, J. Am. Ceram. Soc., 78, 146-152 (1995).
  19. R. A. Laudise and J. W. Niesen, Hydrothermal crystal growth, Solid State Phys., 12, 149-222 (1961).
  20. D. J. Watson, C. A. Randall, R. E. Newnham, and J. H. Adair, Ceramic Transation, Vol. 1, Ceramic Powder Science, II, 154-161, The Am. Ceram. Soc., Westerville, USA (1988).
  21. B. Xia, L. Duan, and Y. Xie, $ZrO_2$ nanopowders prepared by low-temperature vapor-phase hydrolysis, J. Am. Ceram. Soc., 83 1077-1080 (2000).
  22. W. D. Kingery, H. K. Bowen, and D. R. Uhlman, Introduction to Ceramics, 2nd ed., 307-330, John Wiley, NY, USA (1976).
  23. S. S. Woo and H. K. Kim, Synthesis and characterization of nanoporous zirconia, J. Korean Powder Metall. Inst., 14, 309-314 (2007).
  24. H. J. Noh, J. K. Lee, D. S. Seo, and K. H. Hwang, Preparation of zirconia nanocrystalline powder by the hydrothermal treatment at low temperature, J. Korean Ceram. Soc., 39, 308-314 (2002).