Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel

바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략

  • Kim, Garam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Rizwan, Muhammad (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2014.11.17
  • Published : 2014.12.10


Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.


Supported by : Ministry of Oceans and Fisheries


  1. L. Brennan and P. Owende, Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557-577 (2010).
  2. X. Miao and Q. Wu, Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol., 97, 841-846 (2006).
  3. O. Perez-Garcia, F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan, Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res., 45, 11-36 (2011).
  4. W. Zhang, P. Zhang, H. Sun, M. Chen, S. Lu, and P. Li, Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa, Bioresour. Technol., 174, 52-58 (2014).
  5. E. A. Ehimen, Z. F. Sun, and C .G. Carrington, Variables affecting the in situ transrsterification of microalgae lipids, Fuel, 89, 677-684 (2010).
  6. D. M. Mousdale, Biofuels: Biotechnology, Chemistry and Sustainable Development, CRC Press, FL, USA (2008).
  7. C. Dayananda, R. Sarada, M. U. Rani, T. R. Shamala, and G. A. Ravishankar, Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media, Biomass Bioenergy, 31, 87-93 (2007).
  8. M. J. Griffiths and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009).
  9. L. Xin, H. Y. Hu, G. Ke, and Y. X. Sun, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresour. Technol., 101, 5494-5500 (2010).
  10. C. T. Evans and C. Ratledge, Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14, J. Gen. Microbiol., 130, 1705-1710 (1984).
  11. J. R. Benemann and W. J. Oswald, System and Economic Analysis of Microalgae Ponds for Conversion of $CO_2$ to Biomass. Technical Progress Report DEFG22-93PC93204, The Department of Energy, USA (1996).
  12. A. Darzins, P. Pienkos, and L. Edye, Current Status and Potential for Algal Biofuels Production, IEA Bioenergy Task 39, Report T39-T2 6, NREL, USA (2010).
  13. D. E. O. Santiago, H. F. Jin, and K. Lee, The influence of ferrous- complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp., Process Biochem., 45, 1949-1953 (2010).
  14. E. M. Grima, E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti, Recovery of microalgal biomass and metabolite: Process options and economics, Biotechnol. Adv., 20, 491-515 (2003).
  15. J.-R S. Ventura, B. Yang, Y. W. Lee, K. Lee, and D. Jahng, Life cycle analyses of $CO_2$, energy, and cost for four different routes of microalgal bioenergy conversion, Bioresour. Technol., 137, 302-310 (2013).
  16. S. H. Lee, J. W. Kook, J. G. Na, and Y. K. Oh, Net energy analysis of the microalgae biorefinery, Appl. Chem. Eng., 24(3), 285-290 (2013).
  17. G. A. Thompson, Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1302, 17-45 (1996).
  18. I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186 (2006).
  19. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621-639 (2008).
  20. L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici, Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100-112 (2009).
  21. A. M. Illman, A. H. Scragg, and S. E. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000).
  22. J.-M. Lv, L.-H. Cheng, X.-H. Xu, L. Zhang, and H.-L. Chen, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797-6804 (2010).
  23. A. Widjaja, C. C. Chien, and Y. H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. Taiwan Inst. Chem. Eng., 40, 13-20 (2009).
  24. I. Khozin-Goldberg and Z. Cohen, The effect of phosphate starva tion on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus, Phytochemistry, 67, 696-701 (2006).
  25. K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol., 30, 972-979 (1994).
  26. T. Matthew, W. Zhou, J. Rupprecht, L. Lim, S.R. Thomas-Hall, A. Doebbe, O. Kruse, B. Hankamer, U. C. Marx, and S. M. Smith, The metabolome of Chlamydomonas reinhardtii following induction of anaerobic $H_2$ production by sulfur depletion, J. Biol. Chem., 284, 23415-23425 (2009).
  27. H. F. Jin, B. R. Lim, and K. Lee, Influence of nitrate feeding on carbon dioxide fixation by microalgae, J. Environ. Sci. Health, A41, 2813-2824 (2006).
  28. D. Feng, Z. Chen, S. Xue, and W. Zhang, Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol., 102, 6710-6716 (2011).
  29. S. H. Ho, W. M. Chen, and J. S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for $CO_2$ mitigation and biodiesel production, Bioresour. Technol., 101, 8725-8730 (2010).
  30. G. Mujtaba, W. Choi, C. G. Lee, and K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279-283 (2012).
  31. C. Wan, F. W. Bai, and X. Q. Zhao, Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis ocenica DUT01, Biochem. Eng. J., 78, 32-38 (2013).
  32. G. Kim and K. Lee, Simultaneous enhancement of biomass and lipid production in marine microalga Tetraselmis sp. through the supplementation of nitrate and glycerol, The 10th Korean Society of Marine Biotechnology. October 16, Incheon, Korea (2014).
  33. M. Takagi and T. Yoshida, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 101, 223-226 (2006).
  34. G.-Q. Chen, Y. Jiang, and F. Chen, Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition, J. Phycol., 44, 1309-1314 (2008).
  35. L. Y. Zhu, X. C. Zhang, L. Ji, X. J. Song, and C. H. Kuang, Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities, Process Biochem., 42, 210-214 (2007).
  36. G. Kim and K. Lee, Lipid production in microalga Tetraselmis sp. through salinity variation, The 49th Korean Society of Industrial and Engineering Chemistry Meeting. May 1, Jeju, Korea (2014).
  37. M. Einicker-Lamas, G. A. Mezian, T. B. Fernandes, F. L. S. Silva, F. Guerra, K. Miranda, M. Attias, and M. M. Oliveira, Euglena gracilis as a model for the study of $Cu^{2+}$ and $Zn^{2+}$ toxicity and accumulation in eukaryotic cells, Environ. Pollut., 120, 779-786 (2002).
  38. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008).
  39. H. H. A. E. Baky, G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil, Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing $CO_2$ and $Fe^{3+}$ levels for biodiesel production, Bioresour. Technol., 119, 429-432 (2012).
  40. M. Rizwan, G. Mujtaba, and K. Lee, The effects of iron, $CO_2$ and light/dark in growth, lipid and carbohydrate accumulation in Dunaliella tertiolecta, The 50th Korean Society of Industrial and Engineering Chemistry Meeting. November 7, Daegu, Korea (2014).

Cited by

  1. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production vol.31, pp.3, 2016,
  2. Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation vol.33, pp.1, 2016,