DOI QR코드

DOI QR Code

Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel

바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략

  • Kim, Garam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Rizwan, Muhammad (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2014.11.17
  • Published : 2014.12.10

Abstract

Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.

Keywords

Microalgae;biodiesel;lipid;environmental stress

Acknowledgement

Supported by : Ministry of Oceans and Fisheries

References

  1. W. Zhang, P. Zhang, H. Sun, M. Chen, S. Lu, and P. Li, Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa, Bioresour. Technol., 174, 52-58 (2014).
  2. L. Brennan and P. Owende, Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557-577 (2010). https://doi.org/10.1016/j.rser.2009.10.009
  3. X. Miao and Q. Wu, Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol., 97, 841-846 (2006). https://doi.org/10.1016/j.biortech.2005.04.008
  4. O. Perez-Garcia, F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan, Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res., 45, 11-36 (2011). https://doi.org/10.1016/j.watres.2010.08.037
  5. E. A. Ehimen, Z. F. Sun, and C .G. Carrington, Variables affecting the in situ transrsterification of microalgae lipids, Fuel, 89, 677-684 (2010). https://doi.org/10.1016/j.fuel.2009.10.011
  6. D. M. Mousdale, Biofuels: Biotechnology, Chemistry and Sustainable Development, CRC Press, FL, USA (2008).
  7. C. Dayananda, R. Sarada, M. U. Rani, T. R. Shamala, and G. A. Ravishankar, Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media, Biomass Bioenergy, 31, 87-93 (2007). https://doi.org/10.1016/j.biombioe.2006.05.001
  8. M. J. Griffiths and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009). https://doi.org/10.1007/s10811-008-9392-7
  9. L. Xin, H. Y. Hu, G. Ke, and Y. X. Sun, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresour. Technol., 101, 5494-5500 (2010). https://doi.org/10.1016/j.biortech.2010.02.016
  10. D. E. O. Santiago, H. F. Jin, and K. Lee, The influence of ferrous- complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp., Process Biochem., 45, 1949-1953 (2010). https://doi.org/10.1016/j.procbio.2010.04.003
  11. C. T. Evans and C. Ratledge, Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14, J. Gen. Microbiol., 130, 1705-1710 (1984).
  12. J. R. Benemann and W. J. Oswald, System and Economic Analysis of Microalgae Ponds for Conversion of $CO_2$ to Biomass. Technical Progress Report DEFG22-93PC93204, The Department of Energy, USA (1996).
  13. A. Darzins, P. Pienkos, and L. Edye, Current Status and Potential for Algal Biofuels Production, IEA Bioenergy Task 39, Report T39-T2 6, NREL, USA (2010).
  14. E. M. Grima, E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti, Recovery of microalgal biomass and metabolite: Process options and economics, Biotechnol. Adv., 20, 491-515 (2003). https://doi.org/10.1016/S0734-9750(02)00050-2
  15. J.-R S. Ventura, B. Yang, Y. W. Lee, K. Lee, and D. Jahng, Life cycle analyses of $CO_2$, energy, and cost for four different routes of microalgal bioenergy conversion, Bioresour. Technol., 137, 302-310 (2013). https://doi.org/10.1016/j.biortech.2013.02.104
  16. S. H. Lee, J. W. Kook, J. G. Na, and Y. K. Oh, Net energy analysis of the microalgae biorefinery, Appl. Chem. Eng., 24(3), 285-290 (2013).
  17. G. A. Thompson, Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1302, 17-45 (1996). https://doi.org/10.1016/0005-2760(96)00045-8
  18. I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186 (2006). https://doi.org/10.1016/j.plipres.2006.01.001
  19. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621-639 (2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x
  20. A. Widjaja, C. C. Chien, and Y. H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. Taiwan Inst. Chem. Eng., 40, 13-20 (2009). https://doi.org/10.1016/j.jtice.2008.07.007
  21. L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici, Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100-112 (2009). https://doi.org/10.1002/bit.22033
  22. A. M. Illman, A. H. Scragg, and S. E. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000). https://doi.org/10.1016/S0141-0229(00)00266-0
  23. J.-M. Lv, L.-H. Cheng, X.-H. Xu, L. Zhang, and H.-L. Chen, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797-6804 (2010). https://doi.org/10.1016/j.biortech.2010.03.120
  24. I. Khozin-Goldberg and Z. Cohen, The effect of phosphate starva tion on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus, Phytochemistry, 67, 696-701 (2006). https://doi.org/10.1016/j.phytochem.2006.01.010
  25. K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol., 30, 972-979 (1994). https://doi.org/10.1111/j.0022-3646.1994.00972.x
  26. T. Matthew, W. Zhou, J. Rupprecht, L. Lim, S.R. Thomas-Hall, A. Doebbe, O. Kruse, B. Hankamer, U. C. Marx, and S. M. Smith, The metabolome of Chlamydomonas reinhardtii following induction of anaerobic $H_2$ production by sulfur depletion, J. Biol. Chem., 284, 23415-23425 (2009). https://doi.org/10.1074/jbc.M109.003541
  27. H. F. Jin, B. R. Lim, and K. Lee, Influence of nitrate feeding on carbon dioxide fixation by microalgae, J. Environ. Sci. Health, A41, 2813-2824 (2006).
  28. D. Feng, Z. Chen, S. Xue, and W. Zhang, Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol., 102, 6710-6716 (2011). https://doi.org/10.1016/j.biortech.2011.04.006
  29. G. Kim and K. Lee, Simultaneous enhancement of biomass and lipid production in marine microalga Tetraselmis sp. through the supplementation of nitrate and glycerol, The 10th Korean Society of Marine Biotechnology. October 16, Incheon, Korea (2014).
  30. S. H. Ho, W. M. Chen, and J. S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for $CO_2$ mitigation and biodiesel production, Bioresour. Technol., 101, 8725-8730 (2010). https://doi.org/10.1016/j.biortech.2010.06.112
  31. G. Mujtaba, W. Choi, C. G. Lee, and K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279-283 (2012). https://doi.org/10.1016/j.biortech.2012.07.057
  32. C. Wan, F. W. Bai, and X. Q. Zhao, Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis ocenica DUT01, Biochem. Eng. J., 78, 32-38 (2013). https://doi.org/10.1016/j.bej.2013.04.014
  33. M. Takagi and T. Yoshida, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 101, 223-226 (2006). https://doi.org/10.1263/jbb.101.223
  34. G.-Q. Chen, Y. Jiang, and F. Chen, Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition, J. Phycol., 44, 1309-1314 (2008). https://doi.org/10.1111/j.1529-8817.2008.00565.x
  35. L. Y. Zhu, X. C. Zhang, L. Ji, X. J. Song, and C. H. Kuang, Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities, Process Biochem., 42, 210-214 (2007). https://doi.org/10.1016/j.procbio.2006.08.002
  36. G. Kim and K. Lee, Lipid production in microalga Tetraselmis sp. through salinity variation, The 49th Korean Society of Industrial and Engineering Chemistry Meeting. May 1, Jeju, Korea (2014).
  37. M. Rizwan, G. Mujtaba, and K. Lee, The effects of iron, $CO_2$ and light/dark in growth, lipid and carbohydrate accumulation in Dunaliella tertiolecta, The 50th Korean Society of Industrial and Engineering Chemistry Meeting. November 7, Daegu, Korea (2014).
  38. M. Einicker-Lamas, G. A. Mezian, T. B. Fernandes, F. L. S. Silva, F. Guerra, K. Miranda, M. Attias, and M. M. Oliveira, Euglena gracilis as a model for the study of $Cu^{2+}$ and $Zn^{2+}$ toxicity and accumulation in eukaryotic cells, Environ. Pollut., 120, 779-786 (2002). https://doi.org/10.1016/S0269-7491(02)00170-7
  39. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  40. H. H. A. E. Baky, G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil, Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing $CO_2$ and $Fe^{3+}$ levels for biodiesel production, Bioresour. Technol., 119, 429-432 (2012). https://doi.org/10.1016/j.biortech.2012.05.104

Cited by

  1. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.18
  2. Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation vol.33, pp.1, 2016, https://doi.org/10.1007/s11814-015-0089-8