Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects

기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석

  • Lee, Sang-Youl (Department of Civil Engineering, Andong National University)
  • 이상열 (안동대학교 토목공학과)
  • Received : 2013.08.05
  • Accepted : 2013.11.07
  • Published : 2013.11.30


This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.


Supported by : 한국연구재단


  1. S. Y. Lee, and S. Y. Chang, "Dynamic Instability of Delaminated Composite Structures with Various Geometrical Shapes," Journal of the Korean Society for Advanced Composite Structures, Vol. 1, No. 1, pp.1-8, 2010.
  2. H. S. Ji, and S. Y. Lee, "Nonlinear dynamic behaviors of laminated composite structures containing central cutouts," Journal of Korean Society of Steel Construction, Vol. 23, No. 5, pp.607-614, 2011.
  3. J. S. Chang, and Y. P. Huang, "Geometrically nonlinear static and transiently dynamic behavior of laminated composite plates based on a higher order displacement field", Composite Structures, Vol.18, pp.327-364, 1991. DOI:
  4. J. Chen, D. J. Dawe, and S. Wang, "Nonlinear transient analysis of rectangular composite laminated plates", Composite Structures, Vol.49, pp.129-139, 2000. DOI:
  5. A. J. M. Ferreira, C. M. C. Roque, and R. M. N. Jorge, "Static and free vibration analysis of composite shells by radial basis functions", Engineering Analysis with Boundary Elements, Vol.30, pp.719-733, 2006. DOI:
  6. M. R. Khalil, M. D. Olson, and D. L. Anderson, "Non-linear dynamic analysis of stiffened plates" , Computers and Structures, Vol.29, pp.929-941, 1998,.
  7. S. S .E, Lam, D. J. Dawe, and Z. G. Azizian "Non-linear analysis of rectangular laminates under end shortening, using shear deformation plate theory", International Journal of Numerical Method in Engineering, Vol.36, pp.1045-1064, 1993. DOI:
  8. T. Park, and S. Y. Lee, "Parametric instability of delaminated composite spherical shells subjected to in-plane pulsating forces", Composite Structures, Vol.91, pp.196-204, 2009. DOI:
  9. J. N. Reddy, and C. F. Liu, "A higher-order shear deformation theory for laminated elastic shells", International Journal of Engineering Science, Vol.23, pp.319-330, 1985. DOI:
  10. J. N. Reddy, "An Introduction to nonlinear finite element Analysis", Oxford University Press, 2006.
  11. J. L. Sanders, "Nonlinear theories for thin shells", Quarterly of Applied Mathematics, Vol.21, No.1, pp.21-36, 1963.