Social Network Group Recommendation Using Dynamic User Profiles and Collaborative Filtering

동적 사용자 프로필 및 협업 필터링을 이용한 소셜 네트워크 그룹 추천

  • 양희태 (충북대학교 정보통신공학과) ;
  • 차재홍 (충북대학교 정보통신공학과) ;
  • 안민제 (충북대학교 정보통신공학과) ;
  • 임종태 (충북대학교 정보통신공학과) ;
  • 이하 (충북대학교 정보통신공학과) ;
  • 복경수 (충북대학교 정보통신공학과) ;
  • 유재수 (충북대학교 정보통신공학과)
  • Received : 2013.09.23
  • Accepted : 2013.11.01
  • Published : 2013.11.28


Recently, as SNS services have been increased, studies on recommendation schemes have been actively done. Recommendation scheme provides various favorable or needed services with users on real time. Group recommendation provides users with suitable groups based on their preference. In this paper, we propose a new group recommendation scheme considering user profiles and collaborative filtering in social networks. The proposed scheme can solve the problems of the static profile based group recommendation scheme because it collects the recent group activities and updates user profiles. It also recommends the more various groups by reflecting the similar tendencies of other users within a group through collaborative filtering. Our experimental results show that the proposed scheme recommends various groups that significantly considers the user's changing preferences compared to the existing scheme.


Supported by : 정보통신산업진흥원, 한국연구재단


  1. 송정진, 이상철, 김상욱, "사용자의 다양성 성향을 고려하는 추천 기법", 정보과학회논문지:데이타베이스, 제40권, 제2호, pp.99-105, 2012.
  2. L. Quijano-Sanchez, J. A. Recio-Garcıa, and B. Diaz-Agudo, "Personality and Social Trust in Group Recommendations," Proc. International Conference on Tools with Artificial Intelligence, Vol.3, pp.121-126, 2010.
  3. L. Boratto, S. Carta, A. Chessa, M. Agelli, and M. L. Clemente, "Group Recommendation with Automatic Identification of Users Communities," Proc. International Workshop on Intelligent Web Interaction, Vol.3, pp.547-550, 2009.
  4. M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, and K. Seada, "Enhancing Group Recommendation by Incorporating Social Relationship Interactions," Proc. International ACM SIGGROUP Conference on Supporting Group Work, pp.97-106, 2010.
  5. S. AmerYahia, S. Basu Roy, A. Chawla, G. Das, C. Yua, "Group Recommendation: Semantics and Efficiency," Proc. International Conference on Very Large Data Bases, Vol.2, No.2, pp.754-765, 2009.
  6. X. Liu, Y. Tian, M. Ye, and W. Lee, "Exploring Personal Impact for Group Recommendation," Proc. International conference on Information and Knowledge Management, pp.674-683, 2012.
  7. C. Wan, B. Kao, and D. W. Cheung, "Location-sensitive Resources Recommendation in Social Tagging Systems," Proc. international conference on Information and Knowledge Management, pp.1960-1964, 2012.
  8. 정연오, 이성우, 이지형, "개인화된 전문가 그룹을 활용한 추천 시스템", 한국지능시스템학회, 제23권, 제1호, pp.7-11, 2013.
  9. 김재영, 이석원, "온톨로지 기반 영화 메타더이터간 연관성을 활용한 영화 추천 기법", 한국지능정보시스템학회, 제19권, 제3호, pp.25-44, 2013.
  10. 이한석, "SNS 디지털 환경의 특성이 문화콘텐츠 구매의도에 미치는 영향", 한국콘텐츠학회논문지, 제12권, 제7호, pp.336-345, 2012.
  11. 안성만, 김인환, 최병구, 조윤호, 김은홍, 김명균, "소셜네트워크 분석을 통한 협업필터링 추천 성과의 이해", 한국전자거래학회지, 제17권, 제2호, pp.129-147, 2012.
  12. M. Tang, Y. Jiang, J. Liu, and X. Liu, "Location Aware Collaborative Filtering for QoS-Based Service Recommendation," Proc. International Conference on Web Services, pp.202-209, 2012.
  13. Y. Cui, S. Song, L. He, and G. Li, "A Collaborative Filtering Algorithm Based on User Activity Level," Proc. International Conference on Business Intelligence and Financial Engineering, pp.80-83, 2012.