DOI QR코드

DOI QR Code

Fabrication and Characterization of Dodecyl-derivatized Silicon Nanowires for Preventing Aggregation

  • Shin, Donghee ;
  • Sohn, Honglae
  • Received : 2013.09.26
  • Accepted : 2013.10.08
  • Published : 2013.11.20

Abstract

Single-crystalline silicon nanowires (SiNWs) were fabricated by using an electroless metal-assisted etching of bulk silicon wafers with silver nanoparticles obtained by wet electroless deposition. The etching of SiNWs is based on sequential treatment in aqueous solutions of silver nitrate followed by hydrofluoric acid and hydrogen peroxide. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the Si substrate were produced. Free-standing SiNWs were then obtained using ultrasono-method in toluene. Alkyl-derivatized SiNWs were prepared to prevent the aggregation of SiNWs and obtained from the reaction of SiNWs and dodecene via hydrosilylation. Optical characterizations of SiNWs were achieved by FT-IR spectroscopy and indicated that the surface of SiNWs is terminated with hydrogen for fresh SiNWs and with dodecyl group for dodecyl-derivatized SiNWs, respectively. The main structures of dodecyl-derivatized SiNWs are wires and rods and their thicknesses of rods and wire are typically 150-250 and 10-20 nm, respectively. The morphology and chemical state of dodecyl-derivatized SiNWs are characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

Keywords

Silicon nanowires;Hydrosilylation;Metal-assisted etching;Aggregation

References

  1. Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. Nano Lett. 2005, 5, 457. https://doi.org/10.1021/nl047990x
  2. Schmidt, V.; Senz, S.; Gosele, U. Nano Lett. 2005, 5, 931. https://doi.org/10.1021/nl050462g
  3. Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66. https://doi.org/10.1038/35051047
  4. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Nano Lett. 2008, 8, 710. https://doi.org/10.1021/nl072622p
  5. Koo, S.; Li, Q.; Edelstein, M. D.; Richter, C. A.; Vogel, E. M. Nano Lett. 2005, 5, 2519. https://doi.org/10.1021/nl051855i
  6. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149. https://doi.org/10.1021/nl025875l
  7. Duan, X. F.; Huang, Y.; Lieber, C. M. Nano Lett. 2002, 2, 487. https://doi.org/10.1021/nl025532n
  8. Koh, Y.; Park, J.; Kim, J.; Jang, S.; Woo, H.-G.; Sohn, H. J. Nanosci. Nanotechnol. 2010, 10, 3590. https://doi.org/10.1166/jnn.2010.2250
  9. Jang, S.; Kim, J.; Koh, Y.; Ko, Y. C.; Woo, H.-G.; Sohn, H. J. Nanosci. Nanotechnol. 2007, 7, 4049. https://doi.org/10.1166/jnn.2007.096
  10. Jang, S.; Koh, Y.; Kim, J.; Park, J.; Park, C.; Kim, S. J.; Cho, S.; Ko, Y. C.; Sohn, H. Mater. Lett. 2008, 62, 552. https://doi.org/10.1016/j.matlet.2007.06.009
  11. Park, C.; Kim, J.; Jang, S.; Woo, H.-G.; Ko, Y. C.; Sohn, H. J. Nanosci. Nanotechnol. 2010, 10, 3375. https://doi.org/10.1166/jnn.2010.2258
  12. Kim, J.; Jang, S.; Koh, Y.; Park, C.; Woo, H.-G.; Kim, S.; Sohn, H. J. Nanosci. Nanotechnol. 2008, 8, 4951. https://doi.org/10.1166/jnn.2008.1246
  13. Kim, S. G.; Kim, S.; Ko, Y. C.; Cho, S.; Sohn, H. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313, 398.
  14. Koh, Y.; Jang, S.; Kim, J.; Kim, S.; Ko, Y. C.; Cho, S.; Sohn, H. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313, 328.
  15. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. https://doi.org/10.1063/1.1753975
  16. Wang, Y.; Schmidt, V.; Senz, S.; Gosele, U. Nat. Nanotechnol. 2006, 1, 186. https://doi.org/10.1038/nnano.2006.133
  17. Sivakov, V.; Heyroth, F.; Falk, F.; Andra, G.; Christiansen, S. H. J. Cryst. Growth 2007, 300, 288. https://doi.org/10.1016/j.jcrysgro.2006.11.329
  18. Sivakov, V.; Andra, G.; Himcinschi, C.; Gosele, U.; Zahn, D. R. T.; Christiansen, S. Appl. Phys. A: Mater. Sci. Process 2006, 85, 311. https://doi.org/10.1007/s00339-006-3675-0
  19. Fuhrmann, B.; Leipner, H. S.; Hoche, H.-R.; Schubert, L.; Werner, P.; Gosele, U. Nano Lett. 2005, 5, 2524. https://doi.org/10.1021/nl051856a
  20. Oh, S. H.; van Benthem, K.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Nano Lett. 2008, 8, 1016. https://doi.org/10.1021/nl072670+
  21. Kawashima, T.; Mizutani, T.; Nakagawa, T.; Torii, H.; Saitoh, T.; Komori, K.; Fujii, M. Nano Lett. 2008, 8, 362. https://doi.org/10.1021/nl072366g
  22. Gorostiza, P.; Kulandainathan, M. A.; Diaz, R.; Sanz, F.; Allongue, P.; Morante, J. R. J. Electrochem. Soc. 2000, 147, 1026. https://doi.org/10.1149/1.1393308
  23. Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M. Nano Lett. 2002, 2, 1067. https://doi.org/10.1021/nl025677u
  24. Magagnin, L.; Maboudian, R.; Carraro, C.; J. Phys. Chem. B 2002, 106, 401. https://doi.org/10.1021/jp013396p
  25. Peng, K.-Q.; Yan, Y.-J.; Gao, S.-P.; Zhu, J. Adv. Mater. 2002, 14, 1164. https://doi.org/10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E
  26. Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387. https://doi.org/10.1002/adfm.200500392
  27. Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S.-T.; Zhu, J. Small 2005, 1, 1062. https://doi.org/10.1002/smll.200500137
  28. Sohn, H.; Tan, R. P.; Powell, D. R.; West, R. Organometallics 1994, 13, 1390. https://doi.org/10.1021/om00016a046
  29. Cho, E. J.; Lee, V.; Yoo, B. R.; Jung, I. N.; Sohn, H.; Powell, D. R.; West, R. Organometallics 1997, 16, 4200. https://doi.org/10.1021/om970393j
  30. Kennou, S.; Ladas, S.; Paloura, E. C.; Kalomiros, J. A. Appl. Surf. Sci. 1995, 90, 283. https://doi.org/10.1016/0169-4332(95)00075-5