DOI QR코드

DOI QR Code

PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration

  • Zeferino, R. Sanchez (Instituto de Fisica, Universidad Autonoma de Puebla) ;
  • Pal, U. (Instituto de Fisica, Universidad Autonoma de Puebla) ;
  • Melendrez, R (Centro de Investigacion en Fisica, Universidad de Sonora) ;
  • Flores, M. Barboza (Centro de Investigacion en Fisica, Universidad de Sonora)
  • Received : 2012.06.21
  • Accepted : 2013.10.23
  • Published : 2013.12.25

Abstract

In this article, we present the effects of Ag doping and after-growth thermal annealing on the photoluminescence (PL) and thermoluminescence (TL) behaviors of $SnO_2$ nanoparticles. $SnO_2$ nanoparticles of 4-7 nm size range containing different Ag contents were synthesized by hydrothermal process. It has been observed that the after-growth thermal annealing process enhances the crystallite size and stabilizes the TL emissions of $SnO_2$ nanostructures. Incorporated Ag probably occupies the interstitial sites of the $SnO_2$ lattice, affecting drastically their emission behaviors on thermal annealing. Both the TL response and dose-linearity of the $SnO_2$ nanoparticles improve on 1.0% Ag doping, and subsequent thermal annealing. However, a higher Ag content causes the formation of Ag clusters, reducing both the TL and PL responses of the nanoparticles.

References

  1. Baik. N.S ., Sakai. G ., Shimanoe. K., Miura. N. and Yamazoe. N. (2000), "Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity" Sens. Actuators B. 65 (1-3). 97-100. https://doi.org/10.1016/S0925-4005(99)00403-7
  2. Chen. H.T. Wu. X.L., Zhang. Y.Y., Zhu. J. Cheng. Y.C. and Chu. P.K. (2009), "A novel hydrothenual route to synthesize solid $SnO_{2}$ nanospheres and their photoluminescence property". Appl. Phys. A. 97 (3), 581-585. https://doi.org/10.1007/s00339-009-5257-4
  3. Dieguez, A. Rodriguez, A.R., Vila, A. and Morante. J.R. (2001), "The complete Raman spectrum of nanometric $SnO_{2}$ particles". J. Appl. Phys., 90(3), 1550-1557. https://doi.org/10.1063/1.1385573
  4. Epifani, M., Arbio, J., Pellicer, E., Comini, E., Siciliano. P., Faglia, G. and Marante, J.R. (2008), "Synthesis and gas-sensing properties of Pd-doped $SnO_{2}$ nanocrystals. A case study of a general methodology for poping metal oxide nanocrystals". Cryst Growth Des., 8(5), 1774-1778. https://doi.org/10.1021/cg700970d
  5. German, R.M. (1996), Sintering theory and practice. John Willey & Sons, New York.
  6. Gnanam. S, and Rajendran. V. (2010), "Synthesis of tin oxide nanoparticles by sol-gel process: effect of solvents on the optical properties", J. Sol-Gel Sci. Technol., 53(3), 555-559. https://doi.org/10.1007/s10971-009-2131-y
  7. Kortov. S.V. (2010), "Nanophosphars and outlooks for their use in ionizing radiation detection", Rad Meas., 45 (3). 512-515.
  8. Lee. E.J.H., Ribeiro. C. Giraldi. T.R., Longo. E. and Leite. E.R. (2004), "Photoluminescence in quantumconfined $SnO_{2}$ nanocrystals: Evidence of free exciton decay", Appl. Phys. Lett., 84(10), 1745-1747. https://doi.org/10.1063/1.1655693
  9. Lee. J.I., Chang. I., Kim. J.L., Kim. B.H., Kim. S.I., Chung. K.S. and Choe. H.S. (2011), "LiF: Mg, Cu, Si material with intense high-temperature TL peak prepared by various thenual treatment conditions", Rad Meas., 46(12), 1496-1499. https://doi.org/10.1016/j.radmeas.2011.05.044
  10. Luo, S., Fan, J., Liu, W., Zhang, M., Song, Z., Lin, C., Wu, X. and Chu, P.K. (2006), "Synthesis and low-temperature photoluminescence properties of $SnO_{2}$ nanowires and nanobelts", Nanotechnology. 17(6), 1695-1699. https://doi.org/10.1088/0957-4484/17/6/025
  11. Pal. U., Pal, M. and Simchez Zeferino R. (2012), "Gram-scale synthesis of highly crystalline. 0-D and 1-D $SnO_{2}$ nanoclusters through surfactant-free hydrothenual process", J. Nanopart. Res., 14(7). 969-10.
  12. Qia, Q., Zhanga, T., Liua. L. and Zheng. X. (2009), "Synthesis and toluene sensing properties of $SnO_{2}$ nanofibers", Sens. Actuators B. 137(2). 471-475. https://doi.org/10.1016/j.snb.2008.11.042
  13. Qian. L.H., Wanga. K., Fang, H.T., Lia. Y. and Maa, X.L. (2007), "Au nanoparticles enhance CO oxidation onto $SnO_{2}$ nanobelt". Mater. Chem. Phys., 103(1). 132-136. https://doi.org/10.1016/j.matchemphys.2007.02.001
  14. Reddy. A.J., Kokila. M.K., Nagabhushana, H., Rao, J.L., Shivakumara. C., Nagabhushana, B.M., Chakradhar, R.P. (2011), "EPR, thermo and photoluminescence properties of ZnO nanopowders", Spectrochim. Acta A Mol. Biomol. Spectrosc., 81(1), 59-63. https://doi.org/10.1016/j.saa.2011.06.048
  15. Rumyantseva, M.N., Gaskov, A.M., Rosman, N., Pagnier. T. and Marante, J.R. (2005), "Raman surface vibration modes in nanocrystalline $SnO_{2}$ prepared by wet chemical methods: correlations with the gas sensars perfonuances", Chem. Mater., 17(4). 893-901.
  16. Salah. N. (2011), "Nanocrystalline materials for the dosimetry of heavy charged particles: A review", Radiat. Phys. Chem., 80(1). 1-10. https://doi.org/10.1016/j.radphyschem.2010.08.003
  17. Sanchez-Zeferino, R., Pal, U., Barboza-Flares. M., Santiago, P., Rendon, L. and Garibay Febles. V (2012), "Hydrothenually grow ultra-fine $SnO_{2}$ and $SnO_{2}$: Ag nanoparticles and their optical characteristics", Sci. Adv. Mater., 4(5/6). 591-596. https://doi.org/10.1166/sam.2012.1324
  18. Yang. H.Y., Yu. S.F., Liang. H.K., Lau. S.P, Pramana, S.S., Ferraris. C., Cheng. C.W. and Fan, H.J. (2010), "Ultraviolet electrolurninescence from randomly assembled n-$SnO_{2}$ nanowiresp-GaN:Mg heterojunction", Appl. Mater. Interfaces. 2(4). 1191-1194. https://doi.org/10.1021/am1000294
  19. Yu, K.N., Xiong. Y. Liu. Y. and Xiong, C. (1997), "Microstructural change of nano-$SnO_{2}$ grain assemblages with the annealing temperature", Phys. Rev. B. 55(4), 2666-2671. https://doi.org/10.1103/PhysRevB.55.2666
  20. Zuo, J., Xu, C., Liu, X., Wang, C., Wang, C., Hu, Y. and Qian, Y. (1994), "Study of the Raman spectrum of nanometer $SnO_{2}$",J. Appl. Phys., 75(3).1835-1836. https://doi.org/10.1063/1.356348

Cited by

  1. Synthesis and TSL properties of SnO 2 :Eu nanophosphor for high gamma dosimetry vol.695, 2017, https://doi.org/10.1016/j.jallcom.2016.11.026
  2. Photoluminescence of Rare-Earth Ions in the Nanocrystalline GaAs/SnO2 Heterostructure and the Photoinduced Electrical Properties Related to the Interface vol.2, pp.4, 2017, https://doi.org/10.3390/condmat2010009
  3. Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance vol.34, pp.4, 2017, https://doi.org/10.1007/s11814-016-0347-4
  4. Investigation of superior electro-optical properties of SnO 2 /SiO 2 nanocomposite over its individual counterpart SnO 2 nanoparticles vol.193, 2017, https://doi.org/10.1016/j.matchemphys.2017.02.039
  5. Interface conduction and photo-induced electrical transport in the heterojunction formed by GaAs and Ce3+-doped SnO2 vol.28, pp.7, 2017, https://doi.org/10.1007/s10854-016-6202-x
  6. Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles pp.1862-0760, 2018, https://doi.org/10.1007/s11581-018-2727-8